РД 24.203.03-90. Радиусы и углы гиба труб

Методы гибки труб без заводских приспособлений

В бытовых условиях нередко возникает необходимость в изгибании трубных заготовок при проведении строительных работ или монтаже газовых трубопроводов. При этом экономически нецелесообразно тратить финансовые средства на приобретение заводских трубогибов для разовых операций, многие применяют для  этих целей простые самодельные приспособления.

Стальные трубы

Сталь относится к довольно жестким и прочным материалам, с большим трудом поддающимся деформации, основным методом изменения ее конфигурации является сгиб в нагретом состоянии с наполнителем при одновременном физическом воздействии. Для труб из тонкостенной нержавейки для получения длинного участка с небольшим радиусом изгиба применяют следующую технологию:

  1. Устанавливают заготовку вертикально, закрывают ее с одного конца пробкой и внутрь засыпают очень мелкий сухой песок, после полного заполнения вставляют пробку с другой стороны.
  2. Находят трубу или низкий вертикальный столб нужного диаметра и жестко закрепляют трубный конец на его поверхности.
  3. Оборачивают деталь вокруг трубной оси, поворачивая шаблон или обходя его вокруг.
  4. После навивки освобождают конец и извлекают изогнутую деталь из шаблона, снимают пробки и высыпают песок.

РД 24.203.03-90. Радиусы и углы гиба труб

Рис. 11 Как получают нужный радиус изгиба медной трубы

Медные трубы

Медь относится к более мягким материалам, чем сталь, ее также удобно гнуть при нагревании или с помощью засыпанного внутрь песка. Можно также использовать для изгибания бытовой заменитель дорна – стальную пружину с плотными толстыми витками и сечением чуть меньше обрабатываемой детали. При проведении работ элемент вставляется внутрь и находится в точке, где производится деформация, а после проведения необходимых операций легко извлекается наружу. Но намного проще изгибать медные трубы специальным пружинным трубогибом (данные изделия можно приобрести в торговой сети), которые эффективны на коротких трассах и работают за счет равномерного распределения прилагаемого усилия на поверхность. Пружинное устройство работает следующим образом:

  1. Пружина одевается поверх трубы в нужное место, после чего ее вручную изгибают вместе с трубой.
  2. При дальнейшем изгибании пружину перемещают и производят загиб в другой точке.
  3. По завершении операции пружинный сегмент легко извлекается наружу без применения подсобных средств.

Другой популярный материал – алюминий, проще изгибать с нагреванием горелкой.

РД 24.203.03-90. Радиусы и углы гиба труб

Рис. 12 Как гнут трубы без станка из  алюминия

Металлопластиковые трубы

Да изгибания металлопластиковых труб в бытовом хозяйстве используется внутренняя или наружная пружина (кондуктор). Технология проведения работ аналогична операциям с медной трубой, при сгибке следует соблюдать допустимые ограничения по радиусу во избежание повреждения изделия.

Пластиковые трубы

Основным элементом для изменения конфигурации пластиковых труб является строительный или бытовой фен, для облегчения работ можно использовать песок. Изделия сложной формы гнут следующим образом:

  • На деревянную плиту с помощью шуруповерта вкручивают саморезы по нужной конфигурации заготовки.
  • Вставляют трубный конец между двумя шурупами и производят нагрев стенки трубы феном, обеспечивая направление изделия с поворотами и гибкой по заданному маршруту.
  • По окончании работ выкручивают саморезы и извлекают заготовку.

РД 24.203.03-90. Радиусы и углы гиба труб

Рис. 13 Способы гибки труб из металлопластика наружным и внутренним кондуктором

Можно воспользоваться еще одной простой технологией:

  • Насыпают в пластиковую трубу песок и плотно закрывают ее концы.
  • Помещают изделие на некоторое время в кипящую воду и затем извлекают на поверхность.
  • Придают заготовке нужную форму, фиксируя ее в нужном положении и дожидаясь охлаждения.

РД 24.203.03-90. Радиусы и углы гиба труб

Рис. 14 Как сгибают пластиковые элементы

Существующие промышленные и бытовые методы получения необходимого радиуса изгиба позволяет проводить данные операции с любыми материалами различных диаметров. Для проведения работ применяют специальные приспособления ручного или электромеханического принципа действия, в которых часто используются гидравлические узлы. В бытовом хозяйстве эффективными методами гибки является применение специальных пружин и нагрев изделий газовыми горелками или бытовым феном (при изгибании пластика).

ГОСТ 17365-71 Справочник по холодной штамповке

РД 24.203.03-90. Радиусы и углы гиба труб

Минимальные радиусы гибки труб R должны быть:

  • для труб с наружным диаметром до 20 мм, не менее…2,5D
  • для труб с наружным диаметром свыше 20 мм, не менее…3,5D (где D – наружный диаметр трубы).

Утонение стенок в местах изгиба труб и переходов криволинейных участков в прямолинейные не должно превышать:

  • для стальных труб–20% от исходной толщины стенки
  • для труб алюминиевых сплавов–25% от исходной толщины стенки.

Утонение стенок труб, штампованных из листов, не должно превышать 15% от исходной толщины листа.

Наименьший радиус изгиба

Радиусы изгиба по оси трубы. Гибка без наполнения или оплавки. При меньших радиусах изгиба гибку следует производить с оплавкой или наполнением.

Обозначения: D — диаметр трубы; S — толщина стенки трубы

К оглавлению

Наименьшие радиусы и наименьшие длины прямых участков изогнутых труб показаны на рис. 1.

РД 24.203.03-90. Радиусы и углы гиба труб

Длину изогнутого участка трубы А определяют по формуле:

Где R – наименьший радиус изгиба, мм; dн – наружный диаметр труб, мм.

При выборе радиуса изгиба следует по возможности предпочитать для изгиба трубы в холодном состоянии.

Наименьшая длина прямого участка трубы Lmin необходима для зажима конца трубы при изгибе

Радиусы изгиба медных и латунных труб, изготовляемых соответственно по ГОСТ 617-90 и ГОСТ 494-90 (см рис. 1)

Наружный диаметр dн

Наименьший радиус изгиба R

Наименьшая длина прямого участка Lmin

Радиусы изгиба стальных водогазопроводных труб, изготовляемых по ГОСТ 3262-75 (см рис. 1)

Условный проход Dy

Наружный диаметр dн

Наименьший радиус изгиба R

Наименьшая длина прямого участка Lmin

В горячем состоянии

В холодном состоянии

Радиусы изгиба стальных труб в зависимости от их диаметра и толщины стенокРазмеры, мм

Диаметр трубы, d

Наименьший радиус изгиба при толщине стенки

В.И. Анурьев, Справочник конструктора-машиностроителя, том 3, стр.368-369., Москва 2001

Как рассчитать минимально допустимый радиус

Минимальный радиус гиба трубы, при котором появляется критическая степень деформации, определяет соотношение:

  • Rmin означает минимально возможный радиус гиба изделия;
  • S обозначает толщину, которой обладает трубопровод (в мм).

Следовательно, радиус по срединной трубной оси равен: R=Rmin+0,5∙Dn. Тут Dn означает условный диаметр круглого стержня.

Обязательное условие, чтобы грамотно вычислить минимальный радиус изгиба — это необходимость принять во внимание соотношение:

  • Кт означает коэффициент тонкостенности изделий;
  • D указывает на наружный диаметр труб.

Следовательно, универсальная формула для вычисления минимально допустимого радиуса гибки:

Когда заданный радиус получается больше, нежели значение, получаемое по приведенной выше формуле, то используется метод холодной гибки труб
. Если он меньше рассчитанной величины, материал следует предварительно нагреть. Иначе его стенки при гибке деформируются.

  1. Тогда минимально допустимый радиус гибки полого стержня, без использования специального инструмента, должен составлять: R ≥9,25∙((0,2-Кт)∙0,5).
  2. Когда минимальный радиус гиба меньше рассчитанного значения, тогда использование оправки обязательно.

Поправка радиуса гибки труб после снятия нагрузки, с учетом пружинения (инерция распрямления), рассчитывается по формуле:

  • Do означает сечение оправки;
  • Ki является коэффициентом упругого деформирования для конкретного материала (по справочнику).
  1. Для примерного вычисления упругой деформации для стальной, медной трубы с проходом до 4 см принимается величина коэффициента 1,02.
  2. Для аналогов с внутренним диаметром больше 4 см эта цифра будет равной 1,014.

Чтобы точно знать угол, на который следует гнуть материал, учитывая радиус инерции трубы, применяется формула:

  • ∆c является углом поворота срединной оси;
  • Ki — это коэффициент пружинения по справочнику.

Когда искомый радиус больше сечения полого стержня в 2-3 раза, берется коэффициент пружинения 40-60.

Смотреть видео

Радиус гиба трубы приспособления для получения в быту и промышленности

На строительном рынке можно обнаружить большое количество приспособлений индивидуального использования для изгибания труб, от простейших пружин до сложных электромеханических станков с гидравлической подачей.

Ручные трубогибы

Трубогибы данного класса обладают невысокой стоимостью, имеют простую конструкцию, малый вес и габариты, процесс изгибания заготовки происходит за счет физического усилия работника. По принципу работы ручные агрегаты, выпускаемые промышленностью, можно разбить на следующие категории.

Рычажные. Изгибание производится за счет большого рычага, позволяющего уменьшить прилагаемое мышечное усилие. В таких устройствах заготовка вставляется в оправку заданной формы и размера (пуансон) и с помощью рычага происходит огибание шаблонной поверхности изделием – в результате получается элемент заданного профиля. Рычажные устройства позволяют получать радиус закругления в 180 градусов и подходят для труб из мягких металлов небольшого диаметра (до 1 дюйма). Для получения закруглений различного размера используют сменные пуансоны, для облегчения проведения работ многие модели оснащаются гидроприводом.

РД 24.203.03-90. Радиусы и углы гиба труб

Рис. 7 Арбалетные приспособления ручного типа

Арбалетные. При работе заготовка помещается на два валика или упора, а изгибание происходит давлением на ее поверхность между упорами пуансона заданной формы и сечения. Агрегаты имеют сменные пуансонные насадки и передвижные упоры, позволяющие задавать радиус изгиба стальной трубы или заготовок из цветных металлов.

Гибочный башмак установлен на штоке, который может перемещаться с помощью винтовой передачи, гидравлического давления жидкости при ручном нагнетании или посредством гидравлики с электроприводом. Подобные устройства позволяют производить изгибание труб из мягких материалов диаметром до 100 мм.

Трехроликовые агрегаты (трубогибочные вальцы). Являются самым распространенным типом трубогибочных агрегатов в быту и промышленности, работают по принципу холодной вальцовки. Конструктивно выполнены в виде двух роликов, в ручьи которых устанавливается заготовка, третий ролик постепенно подводят к поверхности, одновременно прокатывая изделие в разные стороны. В результате происходит деформация заготовки без складкообразования большего сечения, чем в других ручных трубогибах.

Отличительной особенностью агрегата является невозможность получения малого радиуса закругления (обычное значение 3 – 4 величины внутреннего диаметра).

Все перечисленные устройства являются бездорновыми агрегатами, поэтому неэффективны при гибке тонкостенных изделий, также их нежелательно использовать при работе с заготовками со сварным стыком стенок – при пластический деформации возможно раскрытие отдельных участков шва.

РД 24.203.03-90. Радиусы и углы гиба труб

Рис. 8 Трубогибочные вальцы

Электромеханические трубогибы

Электромеханические агрегаты в основном используются в промышленности и обеспечивают выполнение следующих технологических процессов.

Бездорновая гибка. Станки применяются при работе с заготовками, для радиусов гиба 3 – 4 D., способны изгибать толстостенные трубы для мебельной и строительной отрасли, магистральных трубопроводов. Станки имеют самую простую конструкцию и управление по сравнению с другими видами, отличаются малыми габаритными размерами и весом.

Бустерная обработка. Агрегаты, работающие по специальной технологии продвижения каретки с деталью дополнительным узлом, разработаны для получения сложных гибов без утоньшения стенок. Применяются для изготовления змеевиков различной формы в тепловой энергетике, котельной и водонагревательной индустрии.

Дорновая гибка. Агрегаты данного типа позволяют производить высококачественное изгибание тонкостенных элементов с наружным диаметром до 120 мм. Промышленные станки могут иметь автоматическое или полуавтоматическое исполнение с числовым программным управлением.

Трехвалковая гибка. Конструкция широко используется для изгибания любых металлов и сплавов, отличается универсальностью: отлично справляется с профилем круглого или прямоугольного сечения, уголками и плоскими пластинами. Многофункциональность агрегата достигается за счет смены валков с различным видом рабочих поверхностей и размеров.

При помощи данного агрегата удобно гнуть элементы большой длины с одинаковым большим радиусом закругления на всем протяжении.

РД 24.203.03-90. Радиусы и углы гиба труб

Рис. 9 Промышленные трубогибы

Металлопластиковые трубы

По мере распространения металлопластиковых труб многие начали применять их во всех возможных коммуникациях. Они надежны, практичны, недороги и удобны в монтаже. Но как гнуть металлопластиковые трубы? Для этого применяют или простой ручной труд (если металл в трубе мягкий), или метод гибки при помощи пружины (он рассматривался выше). Обязательным является выполнение условия, что нельзя гнуть металлопластиковую трубу больше 15 градусов на каждые 2 сантиметра. В случае пренебрежения этим параметром труба просто может стать непригодной по причине большого количества повреждений.

Поведение круглого, квадратного и прямоугольного сечения, виды разрушений

РД 24.203.03-90. Радиусы и углы гиба трубТолщина трубных стенок на внешней части гиба становится меньше из-за того, что при возникающих напряжениях появляется растягивающий момент:

  1. Ставшая тонкой внешняя стенка тяготеет к выгибу, направленному к срединной оси трубы. Это приводит к тому, что ее поперечное сечение деформируется.
  2. Когда предел прочности изделия превышается, оно разрывается по внешней плоскости изгибания.

Как ведут себя квадратный и прямоугольный профиль:

  1. Их трубные стенки подвержены сжимающему и растягивающему напряжению, как на наружной, так и на внутренней плоскости изгиба, по максимуму.
  2. У материала повышенная склонность к деформациям, мастеру трудно их контролировать.
  3. Профильный материал на внутренней стороне изгиба склонен к вертикально направленному расширению. При этом он течет горизонтально вдоль торца изделия. Эти напряжения вдавливают вертикально расположенные трубные стенки. При этом квадрат поперечного сечения деформируется. Он приобретает конфигурацию трапеции.
  4. Поперечное сечение прямоугольной и квадратной формы плохо передает зажимные усилия между изгибочной и зажимающей колодкой.
  5. Профиль стремится проскользнуть вдоль колодки в начале изгибания. При этом он может ее тереть, что ведет к износу оборудования.

Поведение материала с круглым сечением, когда происходит его изгиб:

  1. Материал меньше деформируется на участках наивысшего напряжения. Места максимального сжимания/растягивания расположены по касательной осевой линии к поперечному сечению.
  2. Круглая форма дает металлу возможность равномерно растекаться по всем направлениям в ходе изгибания. Благодаря этому мастеру легче контролировать процессы деформации материала.
  3. Благодаря поперечному сечению округлой формы труба хорошо передает усилия между изгибочной и зажимающей колодкой.
  4. При гибке круглых труб по радиусу, они практически не проскальзывают в инструменте.

Методы сгибания труб и их преимущества

Сгибание труб является технологией, где нужный поворот в направлении трубопроводной линии создается путем физического воздействия на заготовку, метод имеет следующие преимущества:

  • Уменьшенная металлоемкость, в магистрали отсутствуют переходные фланцы, муфты и патрубки.
  • Пониженные трудозатраты при монтаже трубопроводов по сравнению со сварными соединениями.
  • Низкие гидравлические потери из-за неизменного профильного сечения.

РД 24.203.03-90. Радиусы и углы гиба труб

Рис. 3 Дорны для трубогибов

  • Неизменная структура металла, его физические и химические параметры по сравнению со сваркой.
  • Высокое качество герметизации, линия имеет однородную структуру без разрывов и стыков.
  • Эстетичный внешний вид магистрали

Существуют две основных технологии гибки – горячая и холодная, приспособления и методы можно разбить на следующие категории:

  1. По типу физического воздействия трубогибный агрегат может быть ручной и электрический с механическим или гидравлическим приводом.
  2. По технологии сгибания – дорновые (гиб при помощи специальных внутренних протекторов), бездорновые, и вальцовочные установки с роликами.
  3. По профилю – установки для металлопропрофильных прямоугольных или круглых изделий.

РД 24.203.03-90. Радиусы и углы гиба труб

Рис. 4 Горячие способы гибки труб

Горячая гибка

Популярная в быту технология применяется в случаях, когда отсутствует трубогибный аппарат или нет возможности произвести работы холодным способом, процесс состоит из нескольких операций:

  1. Заготовка заполняется речным мелкозернистым сеяным песком без посторонних вкраплений в сухом виде. Для этого с одного конца вставляют заглушку, засыпают песок и закрывают отверстие с другой стороны.
  2. Место изгибания нагревается до температуры не более 900 градусов во избежание пережога и производится постепенное плавное механическое наматывание  детали вокруг округлого шаблона.
  3. По окончании процесса заглушки извлекаются и из заготовки высыпается песок.

Холодные методы сгибания круглых труб

Холодные способы имеют неоспоримые преимущества перед горячими технологиями: они не нарушают структуру металла, более производительны и требуют меньше затрат. При холодном сгибе возникают следующие дефекты:

  1. уменьшение сечения трубы с внешней стороны профиля;
  2. искривления в загибе в виде гофры с внутренней стороны;
  3. изменение профильной формы в местах изгиба труб с круглой на овальную.

РД 24.203.03-90. Радиусы и углы гиба труб

Рис. 5 Сгибание заготовок из металлопрофиля в быту

Чаще всего подобные дефекты возникают при деформации тонкостенных труб, поэтому при операциях с ними используется внутренний протектор – дорн, вставляемый во внутреннюю полость.

Дорн представляет собой устройство, состоящее из жесткого стержня с подвижными сегментами на краю шарообразной или полусферической формы. Перед работой устройство помещается во внутреннюю полость заготовки таким образом, чтобы его подвижные элементы располагались в точке гиба, по окончании процедуры дорн извлекают из готового элемента и процесс повторяют.

Радиусы изгиба труб

Радиусы изгиба труб

Гнутьем труб называется технологический процесс, В результате которого под действием внешних нагрузок изменяется наклон геометрической оси трубы. При этом в металле стенок трубы возникают упругие и упруго-пластические деформации. На внешней части погиба возникают растягивающие напряжения, а на внутренней—сжимающие. В результате этих напряжений наружная по отношению к оси изгиба стенка трубы растягивается, а внутренняя сжимается. В процессе гнутья трубы происходит изменение формы поперечного сечения — начальный кольцевой профиль трубы переходит в овальный. Наибольшая овальность сечения наблюдается в центральной части погиба и уменьшается к началу и концу погиба. Это объясняется тем, что наибольшие растягивающие и сжимающие напряжения при гнутье приходятся на центральную часть погиба. Овальность сечения в месте изгиба не должна превышать: для труб диаметром до 19 мм— 15%, для труб диаметром 20 мм и более— 12,5%. Овальность сечения Q в процентах определяют по формуле:

где Dмакс, Dмин, Dном — максимальный, минимальный и номинальный наружные диаметры труб в месте изгиба.

Кроме образования овальности при гнутье, особенно тонкостенных труб, на вогнутой части погиба иногда возникают складки (гофры). Овальность и складкообразование отрицательно сказываются на работе трубопровода, так как они уменьшают проходное сечение, увеличивают гидравлическое сопротивление и являются обычно местом засорения и повышенной коррозии трубопровода.

В соответствии с требованиями Госгортехнадзора радиусы изгиба стальных труб, отводов, компенсаторов и других гнутых элементов трубопроводов должны быть не менее следующих величин:

при гнутье с предварительной набивкой песком и с нагревом — не менее 3,5 DH.

при гнутье на трубогибочных станках в холодном состоянии без набивки песком — не менее 4DH,

при гнутье с полурифлеными складками (с одной стороны) без набивки песком с нагревом газовыми горелками или в специальных печах — не менее 2,5 DH,

для крутоизогнутых отводов, изготовленных методом горячей протяжки или штамповки, — не менее одного DH.

Допускается гнутье труб с радиусом изгиба менее указанных в первых трех пунктах, если способ гнутья гарантирует утонение стенки не более чем на 15% толщины, требующейся по расчету.

На трубозаготовительных базах и заводах, а также монтажных площадках применяются следующие основные способы гнутья труб: гнутье в холодном состоянии на трубогибочных станках и приспособлениях, гнутье в горячем состоянии на трубогибочных станках с нагревом в печах или токами высокой частоты, гнутье со складками, гнутье в горячем состоянии с набивкой песком.

Длину трубы L, необходимую для получения гнутого элемента, определяют по формуле:

L = 0,0175 R α + l,

где R — радиус изгиба трубы, мм;

α— угол изгиба трубы, град;

l — прямой участок длиной 100—300 мм, необходимый для захвата трубы при гнутье (зависит от конструкции оборудования).

1. Назовите допуски на овальность сечения трубы.

2. Как исчисляется овальность в процентах?

3. Какие радиусы изгиба допускаются требованиями Госгортехнадзора при гнутье труб различными способами?

4. Как определить длину трубы для получения гнутого элемента?

Все материалы раздела «Обработка труб» :

● Очистка и правка труб

● Отбортовка концов труб, штуцеров и отверстий

● Нарезание и накатывание резьбы на трубах

● Радиусы изгиба труб

● Гнутье труб в холодном состоянии

● Гнутье труб в горячем состоянии

● Резка и обработка концов труб

● Обработка труб из цветных металлов

● Обработка труб из пластмасс и стекла

● Подготовка и ревизия арматуры

● Изготовление прокладок в трубозаготовительных цехах и мастерских

● Правила техники безопасности при обработке труб

На нашем сайте вы найдете еще много информации о гибке листового металла Читайте статью Оцифровка работы гибочного станка

K-фактор (коэффициент положения нейтральной линии)

При гибке на листогибочном станке, внутренняя сторона металлического листа сжимается, а внешняя, наоборот, растягивается. Это означает, что есть место на листе, в котором волокна не сжимаются и не растягиваются. Это место называется «нейтральной линией». Расстояние от внутренней части сгиба до нейтральной линии называется К-фактором, коэффициентом положения нейтральной линии.

Изменить этот коэффициент невозможно, так как он является постоянным для каждого типа материала. Он выражается в виде дробей, и чем меньше К-фактор, тем ближе нейтральная линия будет расположена к внутреннему радиусу листа.

РД 24.203.03-90. Радиусы и углы гиба труб

K-фактор = тонкая настройка

Значение К-фактора влияет на плоскую заготовку, возможно, не настолько, как влияет радиус детали, но следует учитывать его при тонкой настройке расчетов для заготовок. Чем меньше К-фактор, тем больше материал растягивается и «выталкивается», заставляя заготовку быть «больше».

РД 24.203.03-90. Радиусы и углы гиба труб

Прогнозирование К-фактора

В большинстве случаев мы можем прогнозировать и настраивать К-фактор при выполнении расчетов плоской заготовки.

РД 24.203.03-90. Радиусы и углы гиба труб

Необходимо провести несколько испытаний выбранной V-образной выемки и измерить радиус детали. Если необходимо более точно рассчитать К-фактор, можно воспользоваться формулой расчета К-фактора для гибки, приведенной ниже:

РД 24.203.03-90. Радиусы и углы гиба труб

Решение примера:

B = 150 + 100 + 60 +BA1 + BA2

Прогноз К-фактора

B1: R/S=2 => K=0,8

B2: R/S=1,5 => K=0,8

Оба сгиба меньше или равны 90°:

  РД 24.203.03-90. Радиусы и углы гиба труб

что означает:

B1 = 3.14 x 0.66 x (6 + ((4×0.8)/2) – 2 x 10

B1 = -4.25

B2 = 3.14 x 0.5 x (8 + ((4×0.8)/2) – 2 x 12

B2 = -8.93

Итого:


B = 150 + 100 + 60 + (-4.25) + (-8.93)


B= 296.8мм

Автор методики: Хулио Алькасер, менеджер международных продаж Rolleri Press Brake Tools

Комментарий Dreambird

Обработка листового металла на современных производствах часто используется для изготовления деталей, точное соблюдение размеров которых критично. Более того, в условиях, когда скорость изготовления ценится превыше всего и от нее зависит, получит ли субподрядчик заказ на изготовление деталей, производители стараются избегать траты времени на выполнение калькуляции вручную, выполнение различных тестов и исправление допущенных ошибок. Использованный в статье метод, несомненно, может считаться точным и изложенные в нем формулы полезны, но постоянное использование их при расчетах ведет к дополнительным временным затратам на производстве.

Сегодняшние листогибочные прессы зачастую оснащены стойками ЧПУ и последовательность гибки конкретного изделия может быть задана на компьютере непосредственно после проектирования изделия. При наличии готового файла с геометрией плоской развертки последовательность гибки, требующаяся для ее выполнения, также рассчитывается на компьютере после непосредственного импорта этого файла в специализированное CAD/CAM-решение для гибки.

Современное автономное программное решение Radbend, часть CAD/CAM-комплекса Radan для обработки листового металла, является мировым лидером среди приложений аналогичного характера. Все изложенные в статье расчеты заложены в Radbend в виде алгоритмов и не требуют расчетов вручную. Гибка детали выполняется в среде Radbend так, как она будет выполнена на самом деле, затем «слишком длинные» стороны подгоняются для абсолютной точности. Далее уже согнутое изделие отправляется в модуль Radan3D, где на его основе создается заготовка, при расчете длины которой учитывается ранее выполненная в Radbend подгонка. Таким образом при производстве изделия будут соблюдены все требуемые параметры и обработка будет выполнена корректно уже с первого подхода.

Radbend позволяет заранее определить технологичность изготовления детали, генерируя и показывая графически полную симуляцию обработки и последовательность гибки, помогая подобрать инструмент и расположить упоры. С помощью этого модуля можно избежать проблем, часто возникающих на производстве — предотвратить столкновения инструмента, изделия и частей станка.

Мой Instagram
Adblock
detector