Расчет гидравлических потерь по СП 42-101-2003, Exel

Гидравлический расчет однотрубной и двухтрубной системы отопления с формулами, таблицами и примерами

Экономичность теплового комфорта в доме обеспечивают расчет гидравлики, её качественный монтаж и правильная эксплуатация. Главные компоненты отопительной системы — источник тепла (котёл), тепловая магистраль (трубы) и приборы теплоотдачи (радиаторы). Для эффективного теплоснабжения необходимо сохранить первоначальные параметры системы при любых нагрузках независимо от времени года.

Перед началом гидравлических расчётов выполняют:

  • Сбор и обработку информации по объекту с целью:
    • определения количества требуемого тепла;
    • выбора схемы отопления.
  • Тепловой расчёт системы отопления с обоснованием:
    • объёмов тепловой энергии;
    • нагрузок;
    • теплопотерь.

Если водяное отопление признаётся оптимальным вариантом, выполняется гидравлический расчёт.

Для расчёта гидравлики с помощью программ требуется знакомство с теорией и законами сопротивления. Если приведенные ниже формулы покажутся вам сложными для понимания, можно выбрать параметры, которые мы предлагаем в каждой из программ.

Расчёты проводились в программе Excel. Готовый результат можно посмотреть в конце инструкции.

Определение количества газорегуляторных пунктов ГРП

Газорегуляторные пункты предназначены для снижения давления газа и поддержания его на заданном уровне независимо от расхода.

При известном расчетном расходе газообразного топлива районом города определяется количество ГРП, исходя из оптимальной производительности ГРП (V=1500-2000 м3/час) по формуле:

n = , (27)

где n — количество ГРП, шт.;

Vр — расчетный расход газа районом города, м3/час;

Vопт — оптимальная производительность ГРП, м3/час;

n=586,751/1950=3,008 шт.

После определения количества ГРП намечают их месторасположение на генплане района города, устанавливая их в центре газифицируемой площади на территории кварталов.

Обзор программ

Для удобства расчётов применяются любительские и профессиональные программы вычисления гидравлики.

Самой популярной является Excel.

Можно воспользоваться онлайн-расчётом в Excel Online, CombiMix 1.0, или онлайн-калькулятором гидравлического расчёта. Стационарную программу подбирают с учётом требований проекта.

Главная трудность в работе с такими программами — незнание основ гидравлики. В некоторых из них отсутствуют расшифровки формул, не рассматриваются особенности разветвления трубопроводов и вычисления сопротивлений в сложных цепях.

  • HERZ C.O. 3.5 – производит расчёт по методу удельных линейных потерь давления.
  • DanfossCO и OvertopCO – умеют считать системы с естественной циркуляцией.
  • «Поток» (Potok) — позволяет применять метод расчёта с переменным (скользящим) перепадом температур по стоякам.

Следует уточнять параметры ввода данных по температуре — по Кельвину/по Цельсию.

Что такое гидравлический расчёт

Это третий этап в процессе создания тепловой сети. Он представляет собой систему вычислений, позволяющих определить:

  • диаметр и пропускную способность труб;
  • местные потери давления на участках;
  • требования гидравлической увязки;
  • общесистемные потери давления;
  • оптимальный расход воды.

Согласно полученным данным осуществляют подбор насосов .

Для сезонного жилья, при отсутствии в нём электричества, подойдёт система отопления с естественной циркуляцией теплоносителя (ссылка на обзор ).

Основная цель гидравлического расчёта — обеспечить совпадение расчётных расходов по элементам цепи с фактическими (эксплуатационными) расходами. Количество теплоносителя, поступающего в радиаторы, должно создать тепловой баланс внутри дома с учётом наружных температур и тех, что заданы пользователем для каждого помещения согласно его функциональному назначению (подвал +5, спальня +18 и т.д.).

Комплексные задачи — минимизация расходов :

  1. капитальных – монтаж труб оптимального диаметра и качества;
  2. эксплуатационных:
    • зависимость энергозатрат от гидравлического сопротивления системы;
    • стабильность и надёжность;
    • бесшумность.

Расчет гидравлических потерь по СП 42-101-2003, Exel

Замена централизованного режима теплоснабжения индивидуальным упрощает методику вычислений

Для автономного режима применимы 4 метода гидравлического расчёта системы отопления:

  1. по удельным потерям (стандартный расчёт диаметра труб);
  2. по длинам, приведённым к одному эквиваленту;
  3. по характеристикам проводимости и сопротивления;
  4. сопоставление динамических давлений.

Два первых метода используются при неизменном перепаде температуры в сети.

Два последних помогут распределить горячую воду по кольцам системы, если перепад температуры в сети перестанет соответствовать перепаду в стояках/ответвлениях.

Обзор программ для гидравлических вычислений

Расчет гидравлических потерь по СП 42-101-2003, Exel

Пример программы для расчета отопления

По сути любой гидравлический расчет систем водяного теплоснабжения является сложной инженерной задачей. Для ее решения были разработаны ряд программных комплексов, которые упрощают выполнение этой процедуры.

Можно попытаться сделать гидравлический расчет системы отопления в оболочке Excel, воспользовавшись уже готовыми формулами. Но при этом возможно возникновение следующих проблем:

  • Большая погрешность. В большинстве случаев в качестве примера гидравлического расчета отопительной системы берутся однотрубная или двухтрубная схемы. Найти подобные вычисления для коллекторной проблематично;
  • Для правильного учета гидравлического сопротивления трубопровода необходимы справочные данные, которые отсутствуют в форме. Их нужно искать и вводить дополнительно.

Учитывая эти факторы, специалисты рекомендуют использовать программы для расчета. Большинство из них платные, но некоторые имеют демоверсию с ограниченными возможностями.

Oventrop CO

Расчет гидравлических потерь по СП 42-101-2003, Exel

Программа для гидравлического расчета

Самая простая и понятная программа для гидравлического расчета системы теплоснабжения. Интуитивный интерфейс и гибкая настройка помогут быстро разобраться с нюансами ввода данных. Небольшие проблемы могут возникнуть при первичной настройке комплекса. Необходимо будет ввести все параметры системы, начиная от материала изготовления труб и заканчивая расположением нагревательных элементов.

Характеризуется гибкостью настроек, возможностью делать упрощенный гидравлический расчет отопления как для новой системы теплоснабжения, так и для модернизации старой. Отличается от аналогов удобным графическим интерфейсом.

Instal-Therm HCR

Программный комплекс рассчитан для профессионального гидравлического сопротивления системы теплоснабжения. Бесплатная версия имеет множество ограничений. Область применения – проектирование отопления в больших общественных и производственных зданиях.

На практике для автономного теплоснабжения частных домов и квартир гидравлический расчет выполняется не всегда. Однако это может привести к ухудшению работы системы отопления и быстрому выходу из строя его элементов – радиаторов, труб и котла. Что избежать этого нужно своевременно рассчитать параметры системы и сравнить их с фактическими для дальнейшей оптимизации работы отопления.

Пример гидравлического расчета системы отопления:

Проверочный гидравлический расчет газопровода-отвода

Цель расчета: Проверка давления на входе в газораспределительную станцию.

Исходные данные:

Таблица

Пропускная способность, qсут, млн. м3/сут.

8,4

Начальное давление участка газопровода, Рн , МПа

2,0

Конечное давление участка газопровода, Рк , МПа

1,68

Длина участка газопровода, L, км

5,3

Диаметр участка газопровода, dн х ,мм

530 х 11

Среднегодовая температура грунта на глубине залегания газопровода, tгр, 0С

11

Температура газа в начале участка газопровода, tн , 0С

21

Коэффициент теплопередачи от газа к грунту, k, Вт /(м20С)

1,5

Теплоемкость газа, ср, ккал/(кг°С)

0,6

Состав газа

Таблица 1 — Состав и основные параметры компонентов газа Оренбургского месторождения

Компонент

Химическая формула

Концентрация в долях единицы

Молярная масса, кг/кмоль

Критическая температура, К

Критическое давление, МПа

Динамическая вязкость, кгс·с/м2х10-7

Метан

СН4

0,927

16,043

190,5

4,49

10,3

Этан

С2Н6

0,022

30,070

306

4,77

8,6

Пропан

С3Н8

0,008

44,097

369

4,26

7,5

Бутан

С4Н10

0,022

58,124

425

3,5

6,9

Пентан

С5Н12

0,021

72,151

470,2

3,24

6,2

Для выполнения гидравлического расчета предварительно выполняем расчет основных параметров газовой смеси.

Определяем молекулярную массу газовой смеси, М см , кг/кмоль

где а1, а2, аn — объемная концентрация, доли единиц, ;

М1, М2, Мn — молярная масса компонентов, кг/кмоль, .

Мсм = 0,927 ·16,043 + 0,022 · 30,070 + 0,008 · 44,097 + 0,022 · 58,124 +

+ 0,021 · 72,151 = 18,68 кг/кмоль

Определяем плотность смеси газов, с, кг/м3,

где М см — молекулярная масса, кг/моль;

22,414 — объем 1 киломоля (число Авогадро), м3/кмоль.

Определяем плотность газовой смеси по воздуху, Д,

где — плотность газа, кг/м3;

1,293 — плотность сухого воздуха, кг/м3.

Определяем динамическую вязкость газовой смеси, см , кгс·с/м2

где 1, 2, n, — динамическая вязкость компонентов газовой смеси, кгс·с/м2, ;

Определяем критические параметры газовой смеси, Ткр.см. , К

где Ткр1, Ткр2, Ткрn — критическая температура компонентов газовой смеси, К, ;

где Ркр1, Ркр2, Ркрn — критическое давление компонентов смеси, МПа, ;

Определяем среднее давление газа на участке газопровода, Рср ,МПа

где Рн — начальное давление на участке газопровода, МПа;

Рк — конечное давление на участке газопровода, МПа.

Определяем среднюю температуру газа по длине расчетного участка газопровода, tср ,°С,

где tн — температура газа в начале расчетного участка, °С;

dн — наружный диаметр участка газопровода, мм;

l — длина участка газопровода, км;

qсут — пропускная способность участка газопровода, млн.м3/сут;

— относительная плотность газа по воздуху;

Ср — теплоемкость газа, ккал/(кг°С);

k- коэффициент теплопередачи от газа к грунту, ккал/(м2ч°С) ;

е — основание натурального логарифма, е = 2,718.

Определяем приведенные температуру и давление газа, Тпр и Рпр ,

где Рср. и Тср. — соответственно средние давление и температура газа, МПа и К;

Ркр.см. и Ткр.см. — соответственно критические давление и температура газа, МПа и К.

Определяем коэффициент сжимаемости газа по номограмме в зависимости от Рпр и Тпр .

Z = 0,9

Для определения пропускной способности газопровода или его участка при установившемся режиме транспорта газа, без учета рельефа трассы, пользуются формулой, q, млн.м3/сутки,

где dвн — внутренний диаметр газопровода, мм;

Рн и Рк — соответственно начальное и конечное давления участка газопровода, кгс/см2;

л — коэффициент гидравлического сопротивления (с учетом местных сопротивлений по трассе газопровода: трение, краны, переходы и т.д.). Допускается принимать на 5% выше лтр;

Д — относительный удельный вес газа по воздуху;

Тср — средняя температура газа, К;

? — длина участка газопровода, км;

Ж — коэффициент сжимаемости газа;

Из формулы (4.13) выражаем Рк, , кгс/см2,

Гидравлический расчет выполняем в следующей последовательности. Определяем число Рейнольдса, Re,

где qсут — суточная пропускная способность участка газопровода, млн.м3/сут;

dвн — внутренний диаметр газопровода, мм;

— относительная плотность газа;

— динамическая вязкость природного газа; кгс·с/м2;

Так как Re >> 4000, то режим движения газа по трубопроводу турбулентный, квадратичная зона.

Коэффициент сопротивления трения для всех режимов течения газа определяется по формуле, лтр ,

где КЭ — эквивалентная шероховатость (высота выступов, создающих сопротивление движению газа), КЭ = 0,06 мм

Определяем коэффициент гидравлического сопротивления участка газопровода с учётом его усреднённых местных сопротивлений, л ,

где Е — коэффициент гидравлической эффективности, Е = 0,95.

По формуле (4.14) определяем давление в конце участка газопровода.

Вывод: Полученное значение давления соответствует эксплуатационному на конечном участке газопровода.

Расчет гидравлики системы отопления

Нам потребуются данные теплового расчёта помещений и аксонометрической схемы.

Расчет гидравлических потерь по СП 42-101-2003, Exel

Шаг 1: считаем диаметр труб

В качестве исходных данных используются экономически обоснованные результаты теплового расчёта:

1а. Оптимальная разница между горячим (tг) и охлаждённым( tо) теплоносителем для двухтрубной системы – 20º

1б. Расход теплоносителя G, кг/час — для однотрубной системы.

2. Оптимальная скорость движения теплоносителя – ν 0,3-0,7 м/с.

Чем меньше внутренний диаметр труб — тем выше скорость. Достигая отметки 0,6 м/с, движение воды начинает сопровождаться шумом в системе.

3. Расчётная скорость теплопотока – Q, Вт.

Выражает количество тепла (W, Дж), переданного в секунду (единицу времени τ):

Расчет гидравлических потерь по СП 42-101-2003, Exel

Формула для расчёта скорости теплопотока

4. Расчетная плотность воды: ρ = 971,8 кг/м3 при tср = 80 °С

5. Параметры участков:

  • расход мощности – 1 кВт на 30 м³
  • запас тепловой мощности – 20%
  • объём помещения: 18 * 2,7 = 48,6 м³
  • расход мощности: 48,6 / 30 = 1,62 кВт
  • запас на случай морозов: 1,62 * 20% = 0,324 кВт
  • итоговая мощность: 1,62 + 0,324 = 1,944 кВт

Находим в таблице наиболее близкое значения Q:

Получаем интервал внутреннего диаметра: 8-10 мм. Участок: 3-4. Длина участка: 2.8 метров.

Шаг 2: вычисление местных сопротивлений

Чтобы определиться с материалом труб, необходимо сравнить показатели их гидравлического сопротивления на всех участках отопительной системы.

Факторы возникновения сопротивления:

Расчет гидравлических потерь по СП 42-101-2003, Exel

Трубы для отопления

  • в самой трубе:
    • шероховатость;
    • место сужения/расширения диаметра;
    • поворот;
    • протяжённость.
  • в соединениях:
    • тройник;
    • шаровой кран;
    • приборы балансировки.

Расчетным участком является труба постоянного диаметра с неизменным расходом воды, соответствующим проектному тепловому балансу помещения.

Для определения потерь берутся данные с учётом сопротивления в регулирующей арматуре:

  1. длина трубы на расчётном участке/l,м;
  2. диаметр трубы расчётного участка/d,мм;
  3. принятая скорость теплоносителя/u, м/с;
  4. данные регулирующей арматуры от производителя;
  5. справочные данные:
    • коэффициент трения/λ;
    • потери на трение/∆Рl, Па;
    • расчетная плотность жидкости/ρ = 971,8 кг/м3;
  6. технические характеристики изделия:
    • эквивалентная шероховатость трубы/kэ мм;
    • толщина стенки трубы/dн×δ, мм.

Для материалов со сходными значениями kэ производители предоставляют значение удельных потерь давления R, Па/м по всему сортаменту труб.

Чтобы самостоятельно определить удельные потери на трение/R, Па/м, достаточно знать наружный d трубы, толщину стенки/dн×δ, мм и скорость подачи воды/W, м/с (или расход воды/G, кг/ч).

Для поиска гидросопротивления/ΔP в одном участке сети подставляем данные в формулу Дарси-Вейсбаха:

Расчет гидравлических потерь по СП 42-101-2003, Exel

Шаг 3: гидравлическая увязка

Для балансировки перепадов давления понадобится запорная и регулирующая арматура.

  • проектная нагрузка (массовый расход теплоносителя — воды или низкозамерзающей жидкости для систем отопления );
  • данные производителей труб по удельному динамическому сопротивлению/А, Па/(кг/ч)²;
  • технические характеристики арматуры.
  • количество местных сопротивлений на участке.

Задача. выровнять гидравлические потери в сети.

В гидравлическом расчёте для каждого клапана задаются установочные характеристики (крепление, перепад давления, пропускная способность). По характеристикам сопротивления определяют коэффициенты затекания в каждый стояк и далее — в каждый прибор.

Расчет гидравлических потерь по СП 42-101-2003, Exel

Фрагмент заводских характеристик поворотного затвора

Выберем для вычислений метод характеристик сопротивления S,Па/(кг/ч)².

Потери давления/∆P, Па прямо пропорциональны квадрату расхода воды по участку/G, кг/ч:

  • ξпр — приведенный коэффициент для местных сопротивлений участка;
  • А — динамическое удельное давление, Па/(кг/ч)².

Удельным считается динамическое давление, возникающее при массовом расходе 1 кг/ч теплоносителя в трубе заданного диаметра (информация предоставляется производителем).

Σξ — слагаемое коэффициентов по местным сопротивлениям в участке.

Приведенный коэффициент:

Шаг 4: определение потерь

Гидравлическое сопротивление в главном циркуляционном кольце представлено суммой потерь его элементов:

  • первичного контура/ΔPIк ;
  • местных систем/ΔPм;
  • теплогенератора/ΔPтг;
  • теплообменника/ΔPто.

Сумма величин даёт нам гидравлическое сопротивление системы/ΔPсо:

Гидравлический расчет межцехового газопровода

Пропускная способность газопроводов должна приниматься из условий создания при максимально допустимых потерях давления газа наиболее экономичной и надежной в эксплуатации системы, обеспечивающей устойчивость работы ГРП и газорегуляторных установок (ГРУ), а также работы горелок потребителей в допустимых диапазонах давления газа.

Расчетные внутренние диаметры газопроводов определяются исходя из условия обеспечения бесперебойного газоснабжения всех потребителей в часы максимального потребления газа.

Значения расчетной потери давления газа при проектировании газопроводов всех давлений для промышленных предприятий принимаются в зависимости от давления газа в месте подключения с учетом технических характеристик принимаемого к установке газового оборудования, устройств автоматики безопасности и автоматики регулирования технологического режима тепловых агрегатов.

Падение давления для сетей среднего и высокого давлений определяются по формуле

где Pн – абсолютное давление в начале газопровода, МПа;

Рк – абсолютное давление в конце газопровода, МПа;

Р0 = 0,101325 МПа;

l – коэффициент гидравлического трения;

l – расчетная длина газопровода постоянного диаметра, м;

d – внутренний диаметр газопровода, см;

r0 – плотность газа при нормальных условиях, кг/м3;

Q0 – расход газа, м3/ч, при нормальных условиях;

Для наружных надземных и внутренних газопроводов расчетную длину газопроводов определяют по формуле

где l1 – действительная длина газопровода, м;

Sx – сумма коэффициентов местных сопротивлений участка газопровода;

При выполнении гидравлического расчета газопроводов расчетный внутренний диаметр газопровода следует предварительно определять по формуле

где dp – расчетный диаметр, см;

А, В, т, т1 – коэффициенты, определяемые по в зависимости от категории сети (по давлению) и материала газопровода;

Q0 – расчетный расход газа, м3/ч, при нормальных условиях;

DРуд – удельные потери давления, МПа/м, определяемые по формуле

где DРдоп – допустимые потери давления, МПа/м;

L – расстояние до самой удаленной точки, м.

где Р0 = 0,101325 МПа;

Рт – усредненное давление газа (абсолютное) в сети, МПа.

где Рн, Рк – соответственно начальное и конечное давление в сети, МПа.

Принимаем тупиковую схему газоснабжения. Выполняем трассировку межцехового газопровода высокого давления. Разбиваем сеть на отдельные участки. Расчетная схема межцехового газопровода приведена на рисунке 1.1.

Определяем удельные потери давления для межцеховых газопроводов:

Предварительно определяем расчетный внутренний диаметр на участках сети:

Теплообменные устройства
Эффективное использование теплоты во вращающихся печах возможно только при установке системы внутрипечных и запечных теплообменных устройств. Внутрипечные теплообменные устройства .

Фасадная система
Для придания реконструируемому зданию современного архитектурного облика и радикального повышения уровня теплозащиты наружных стен в качестве фасадной системы принята система «вен .

Жилище в стиле техно

Этот стиль, возникший в 80-е годы прошлого столетия, как некий ироничный ответ на радужные перспективы индустриализации и господства технического прогресса, провозглашенные в его начале.

Как работать в EXCEL

Использование таблиц Excel очень удобно, поскольку результаты гидравлического расчёта всегда сводятся к табличной форме. Достаточно определить последовательность действий и подготовить точные формулы.

Ввод исходных данных

Выбирается ячейка и вводится величина. Вся остальная информация просто принимается к сведению.

  • значение D15 пересчитывается в литрах, так легче воспринимать величину расхода;
  • ячейка D16 — добавляем форматирование по условию: «Если v не попадает в диапазон 0,25…1,5 м/с, то фон ячейки красный/шрифт белый».

Для трубопроводов с перепадом высот входа и выхода к результатам добавляется статическое давление: 1 кг/см2 на 10 м.

Оформление результатов

Авторское цветовое решение несёт функциональную нагрузку:

  • Светло-бирюзовые ячейки содержат исходные данные – их можно менять.
  • Бледно-зелёные ячейка — вводимые константы или данные, мало подверженные изменениям.
  • Жёлтые ячейки — вспомогательные предварительные расчёты.
  • Светло-жёлтые ячейки — результаты расчётов.
  • Шрифты:
    • синий — исходные данные;
    • чёрный — промежуточные/неглавные результаты;
    • красный — главные и окончательные результаты гидравлического расчёта.

Расчет гидравлических потерь по СП 42-101-2003, Exel

Результаты в таблице Эксель

Пример от Александра Воробьёва

Пример несложного гидравлического расчёта в программе Excel для горизонтального участка трубопровода.

  • длина трубы100 метров;
  • ø108 мм;
  • толщина стенки 4 мм.

Расчет гидравлических потерь по СП 42-101-2003, Exel

Таблица результатов расчёта местных сопротивлений

Усложняя шаг за шагом расчёты в программе Excel, вы лучше осваиваете теорию и частично экономите на проектных работах. Благодаря грамотному подходу, ваша система отопления станет оптимальной по затратам и теплоотдаче.