Образование накипи и требования к питательной воде
Вместе с питательной водой в котел поступают различные минеральные примеси. Все примеси, находящиеся в воде, делятся на трудно- и легкорастворимые. К числу труднорастворимых примесей относят соли и гидрооксиды Са и М^. Основные наки-пеобразователи имеют отрицательный температурный коэффициент растворимости (т.е. при повышении температуры их растворимость падает). Накапливаясь в котле по мере испарения воды, эти примеси после наступления состояния насыщения начинают из нее выпадать. Прежде всего состояние насыщения наступает для солей жесткости Са(НС03)2, М§(НС03)2, СаС02, М^С02 и др. Центрами кристаллизации служат шероховатости на поверхности нагрева, а также взвешенные и коллоидные частицы, находящиеся в воде котла. Вещества, кристаллизующиеся в объеме воды, образуют взвешенные в ней частицы — шлам. Вещества, кристаллизующиеся на поверхности нагрева, образуют плотные и прочные отложения — накипь. Накипь, как правило, имеет низкую теплопроводность, составляющую 0,1—0,2 Вт/(м-К). Поэтому даже малый слой накипи приводит к резкому ухудшению условий охлаждения металла поверхностей нагрева и вследствие этого к повышению его температуры, что может привести к потере прочности стенки трубы и ее разрушению. Кроме того, накипь ведет к значительному снижению КПД котла в результате уменьшения коэффициента теплопередачи и связанного с этим повышения температуры уходящих газов.
Концентрация солей натрия в воде испарительной поверхности всегда ниже их предела насыщения. Однако и эти соли могут отлагаться на поверхностях нагрева в тех случаях, когда капли воды, находящиеся в паре и попадающие на поверхности нагрева, испаряются полностью, что имеет место в пароперегревателях.
Соединения железа, алюминия и меди, находящиеся в воде в виде растворенных коллоидных и ультратонких взвесей, также могут откладываться на поверхностях нагрева и входить в состав накипи. Накипи из оксидов железа и меди образуются в зонах высоких местных тепловых нагрузок поверхностей нагрева, чаще всего в трубах экранов.
В котлах высокого давления при давлениях более 7 МПа кремниевая кислота Н25Ю3 приобретает способность растворяться в паре, причем с ростом давления эта способность значительно возрастает. Поступая вместе с паром в пароперегреватель, кремниевая кислота разлагается с выделением Н20. В результате в паре появляется 8Ю2, который, попадая на лопатки паровых турбин, образует на них нерастворимые соединения, ухудшающие экономичность и надежность работы турбины.
Отрицательное влияние на работу поверхностей нагрева оказывает содержание в питательной воде минеральных масел и тяжелых нефтепродуктов, которые могут поступать вместе с конденсатом от производственных потребителей. Отложение низкотеплопроводной пленки масла или нефтепродуктов ухудшает условия охлаждения поверхностей нагрева и оказывает такое же влияние, как и накипь.
На эксплуатацию котла вредное влияние оказывает повышенная щелочность воды, которая приводит к вспениванию воды в барабане. Вспениванию воды способствует содержание в ней органических соединений и аммиака. В этих условия сепа-рационные устройства не обеспечивают отделение капель воды от пара, и вода из барабана, содержащая различные примеси, может поступать в пароперегреватель, создавая опасность его загрязнения. Кроме того, повышенная щелочность может явиться причиной щелочной коррозии металла, а также возникновения трещин в местах вальцовки труб в коллекторы и барабан.
Растворенные в питательной воде агрессивные газы 02, С02 вызывают различные формы коррозии металла, ведущей к уменьшению его механической прочности. Пониженная щелочность воды ускоряет коррозию, и в питательной воде должен поддерживаться определенный ее уровень. В котлах низкого давления требуемый уровень pH поддерживается вводом в питательную воду соды, а в котлах высокого давления — фосфатов или аммиака.
Исходя из вышесказанного предельно допустимое содержание вредных примесей в питательной воде нормируется.
Обращение воды в рабочем цикле тэс
Вода
и водяной пар являются теплоносителями
в водном и водопаровом трактах ТЭС, ТЭЦ
и АЭС.
При
решении водной проблемы ТЭС большое
значение имеет то, что переход к высокому
и сверхкритическому давлению значительно
изменяет условия парообразования,
теплообмена при кипении, гидродинамики
паровой смеси в трубах котла, а также
свойства самого рабочего тела.
К
примеру, с повышением давления резко
повышается плотность водяного пара,
снижается скорость пароводяной смеси
в парообразующих трубах, снижается
поверхностное натяжение и вязкость
воды, что способствует образованию
накипи и коррозии.
С
повышением плотности водяного пара
повышается его способность к
растворению различных химических
соединений, содержащихся в котловой
воде, что приводит к значительному
выносу находящихся в воде неорганических
примесей.
Вода
на ТЭС применяется:
-
для
производства пара в котлах, испарителях; -
для
конденсации отработавшего пара в
конденсаторах паровых турбин и
других теплообменных аппаратах; -
для
охлаждения продувочной воды и подшипников
дымососов; -
в
качестве рабочего теплоносителя в
теплофикационных отопительных сетях
и сетях горячего водоснабжения.
Водяной
пар, полученный в котлах, а затем
отработавший в турбинах, подвергается
конденсации или в виде пара пониженных
параметров используется на
производственных и коммунальных
предприятиях для технологических
процессов, отопления и вентиляции.
Рис.
1.1. Схема КЭС:
1
— паровой котел; 2
— паровая турбина; 3
— электрогенератор; 4
— водоподготовительная установка; 5
— конденсатор; 6
— конденсатный насос; 7
— конденсатоочистка (БОУ); 8
— ПНД; 9
— деаэратор; 10
— питательный насос; 11
– ПВД.
DИСХ.В.—
исходная вода.
DД.В.
— добавочная вода направляется в контур
для восполнения потерь пара и конденсата
после обработки с применением
физико-химических методов очистки.
dТ.К.
—
турбинный конденсат, содержит небольшое
количество растворенных и взвешенных
примесей — основная составляющая
питательной воды.
DВ.К.
— возвратный конденсат от внешних
потребителей пара, используется после
очистки в установке очистки обратного
конденсата (7)
от
внесенных загрязнений. Является составной
частью питательной воды.
Dп.в.
— питательная вода, подается в котлы,
парогенераторы
или
реакторы
для замещения испарившейся воды в этих
агрегатах. Представляет собой смесь
DT.K,
DД.В.,
DВ.К.
и конденсируется в элементах указанных
агрегатов.
Рис.
1.2. Схема ТЭС:
1
— паровой котел; 2
— паровая турбина; 3
— электрогенератор;
4
— конденсатор; 5
— конденсатный насос; 6
— установка очистки возвратного
конденсата; 7
— деаэратор; 8
— питательный насос; 9
— подогреватель добавочной воды; 10
— водоподготовка подпитки котлов; 11
— насосы обратного конденсата; 12
— баки возвратного конденсата; 13
— производственный потребитель пара;
14
— промышленный потребитель пара; 15
— водоподготовка подпитки теплосети.
DПР
— продувочная вода — выводится из котла,
парогенератора или реактора на очистку
или в дренаж для поддержания в испаряемой
(котловой) воде заданных концентраций
примесей. Состав и концентрация
примесей в котловой и продувочной воде
одинаковы.
DО.В.
—
охлаждающая или циркуляционная вода,
используется в конденсаторах паровых
турбин для конденсации отработавшего
пара.
DВ.П.
— подпиточная вода тепловой сети, для
восполнения потерь.
Методы и способы подготовки воды
Множество негативных факторов устраняется предварительной термической обработкой и фильтрацией. В остальных случаях подготовка воды для системы отопления включает несколько этапов очистки присадками, реагентами для придания теплоносителю нужных характеристик.
Методы, которыми можно пользоваться перед тем, как заполнить отопительную систему:
- Добавление реагентов. Это определенные химические вещества, которые снижают избыточное содержание тех или иных компонентов, негативно влияющих на систему.
- Каталитическое окисление. Требуется при повышенном содержании примесей железа. Окислительный процесс связывает примеси и выводит их в виде осадка.
- Фильтрование. Для процесса устанавливаются различные фильтры механического типа. Наполнение агрегатов зависит от химического состава воды.
- Смягчение посредством применения электромагнитных волн.
- Замораживание, кипячение или отстаивание воды в течение определенного временного срока. Получается дистиллированная вода для отопления, которая считается лучшим теплоносителем.
- Процесс деаэрации. Это необходимо при избытке кислорода, углекислого и других газов.
Этапы водоподготовки котельной
Этапы очистки для котельной можно разделить на следующие виды:
- Обязательные этапы:
- Грубая механическая очистка.
- Умягчение и обессолевание ионообменными смолами, обратным осмосом.
- Дополнительные этапы – применяют, когда повышено содержание железа, марганца:
- Аэрация.
- Обезжелезивание.
Этапы водоподготовки для котельной отличаются в зависимости от вида котла. Приведем несколько примеров.
Подготовка воды для паровых котлов методом двухступенчатого Na-катионирования c предварительным обезжелезиванием:
Подготовка воды для паровых котлов методом обратного осмоса:
Подготовка воды для водогрейных котлов производительность свыше 1 м3/ч:
Механический фильтр
Это фильтр грубой очистки, его задача не только в очистке от крупных частиц, но и в защите остальной системы – последующих фильтров от взвеси. Механический фильтр – это первый рубеж защиты системы водоподготовки, который предотвращает попадание в систему крупного песка, камней, окалины.
Колонна обезжелезивания
Станция аэрации и колонна обезжелезивания работают в связке. Для обезжелезивания используют специальные каталитические загрузки. Засыпка окисляет растворенное железо и пропускает дальше отфильтрованную воду.
Станция аэрации
Если в воде высокое содержание таких элементов, как железо, марганец, то нужна станция аэрации – колонна и компрессор. Принцип аэрации – в подаче кислорода, из-за чего происходит процесс окисления загрязнителей.
Ионообменный фильтр или обратный осмос
Последняя стадия – умягчение и обессоливание воды. В зависимости от степени необходимой очистки применяют ионообменный фильтр или обратный осмос.
Использование ионообменной смолы обойдется дешевле. Если на этом этапе нужно только умягчение, то ионная колонна справится с задачей.
Если вода с повышенным содержанием солей, то используют установку обратного осмоса. Она на 99 % удаляет минеральные соли и загрязнители из воды. Главный недостаток – в высокой стоимости оборудования и в большом расходе воды – примерно половина при фильтровании сбрасывается в дренаж.
Каждый этап водоподготовки котельной важен для очистки и защиты котлов от образования минеральных отложений, которые ведут к поломкам.
Чтобы избежать подобных проблем и лишних трат, рекомендуется обязательное проведение правильного технического обслуживания системы водоподготовки.
Водоподготовка для котельной. Котельная вода. Монтаж и обслуживание котельных установок.
Вода в теплоэнергетике. Термины и определения.
Вода, используемая для паровых и водогрейных котлов, в зависимости от технологического участка, имеет разные наименования, закрепленные в нормативных документах:
Сырая вода – вода из источника водоснабжения, не прошедшая очистку и химическую обработку.
Питательная вода – вода на входе в котел, которая должна соответствовать заданным проектом параметрам (химический состав, температура, давление).
Добавочная вода – вода, предназначенная для восполнения потерь, связанных с продувкой котла и утечкой воды и пара в пароконденсатном тракте.
Подпиточная вода – вода, предназначенная для восполнения потерь, связанных с продувкой котла и утечкой воды в теплопотребляющих установках и тепловых сетях. Котловая вода – вода, циркулирующая внутри котла.
Прямая сетевая вода – вода в напорном трубопроводе тепловой сети от источника до потребителя тепла.
Обратная сетевая вода – вода в тепловой сети от потребителя до сетевого насоса.
Классификация котлов. Термины и определения.
По способу получения энергии для нагрева воды или получения пара котлы делятся на: – Энерготехнологические – котлы, в топках которых осуществляется переработка технологических материалов (топлива); – Котлы-утилизаторы – котлы, в которых используется теплота отходящих горячих газов технологического процесса или двигателей; – Электрические – котлы, использующие электрическую энергию для нагрева воды или получения пара.
По типу циркуляции рабочей среды котлы делятся на котлы с естественной и принудительной циркуляцией . В зависимости от количества циркуляций, котлы могут быть прямоточные – с однократным движением рабочей среды, и комбинированные – с многократной циркуляцией.
Относительно движения рабочей среды к поверхности нагрева выделяют: – Газотрубные котлы , в которых продукты сгорания топлива движутся внутри труб поверхностей нагрева, а вода и пароводяная смесь – снаружи труб. – Водотрубные котлы , в которых вода или пароводяная смесь движется внутри труб, а продукты сгорания топлива – снаружи труб.
Помимо нормативной документации необходимо учесть рекомендации производителя котла, указанные в инструкции по эксплуатации/ руководстве пользователя.
Сетевая вода ГВС должна соответствовать нормам «СанПиН 2.1.4.1074-01. Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества».
Примеси сырой воды. Методы водоподготовки для котельной.
Для воды из скважины характерным является превышение содержания железа и марганца , которые также влияют на рабочий режим котлового оборудования. Выбор метода обезжелезивания определяется многими факторами – от производительности установки до сопутствующих примесей.
Существует большое количество реагентов, предназначенных для ингибирования процессов солеотложения и коррозии. Традиционно применяют автоматически дозирующие станции для ввода реагента в предварительно подготовленную воду. В некоторых случаях реагенты совместимы и могут дозироваться из одной ёмкости рабочих растворов, в других – требуется наличие нескольких дозирующих станций. При использовании реагентной коррекционной обработки необходимо следить за приготовлением дозируемых растворов и постоянно контролировать концентрации дозируемых веществ в котловой воде.
Компания «АкваГруп» гарантирует индивидуальный подход к подбору и расчету установки ВПУ для каждого объекта.