Практика использования моно и поликристаллических фотомодулей в солнечных батареях

Что такое монокристаллическая солнечная батарея

Мы уже упомянули о том, что панели бывают двух типов: поли- и монокристаллические. Для начала рассмотрим монокристаллический элемент – он дороже, но мощнее.

Практика использования моно и поликристаллических фотомодулей в солнечных батареях

Особенности

Для такой батареи выращивается специальный монокристалл кремния по способу Чохральского. Этот материал стоит дороже, чем поликристаллическая пластина, но из-за своего высокого качества монокристаллический модуль имеет больший КПД. Монокристаллические солнечные панели, собранные из отдельных кремниевых ячеек, обладают эффективностью работы, которая равна примерно 20–22%.

Лучи света, попадая на поверхность монокристалла кремния, приводят свободные электроны к направленному движению. С обеих сторон кристалла к нему присоединены провода, идущие к потребителю.

КПД такой пластины достаточно высок, так как в ней лучи солнца не рассеиваются, а равномерно распределяются по всей поверхности кристалла. Площадь р-п перехода в пластине велика, за счет чего электроны проникают из одной части полупроводника в другую беспрепятственно.

Практика использования моно и поликристаллических фотомодулей в солнечных батареях

Стоимость

Технология выращивания монокристаллов полупроводника больших размеров довольно трудоемка, из-за чего цена такой батареи всегда выше, чем аналогичного изделия на основе поликристаллов. Разница в стоимости устройств – 10%, что является главным недостатком монокристаллической батареи.

Цена монокристаллической панели мощностью 150 Вт равна 5400 руб., а такая же по конструкции батарея мощностью 200 Вт стоит 11700 руб. Гораздо дороже устройства мощностью 230 Вт и 300 Вт

Конструкция и применение

Полупроводник. Как правило, моно- или поликристаллический кремний, дополненный другими химическими соединениями, которые способствуют образованию фото-электрического эффекта. Состоит из 2 материалов с разной проводимостью, за счет чего между ними происходит постоянное перемещение электронов (p-n-переход).

Прокладка — тончайшее покрытие, которое препятствует свободному движению электронов, находится между слоями полупроводника.

Источник электроэнергии, при подключении которого к прокладке электроны приобретают способность ее преодолевать — в результате этого возникает упорядоченное движение заряженных частиц, собственно, генерируется электрический ток.

Аккумулятор — накапливает полученную электроэнергию.

Контроллер заряда — выполняет функцию распределителя потоков электрической энергии.

Инвертор — нужен для трансформации постоянного тока в переменный.

Стабилизатор напряжения.

Для использования солнечных батарей в качестве основного источника электроэнергии важно, чтобы количество ясных дней преобладало над пасмурными. По этой причине в большинстве регионов нашей страны подобные установки используют преимущественно как вспомогательные.

Внешний вид

Тем не менее, внешний вид – первое, что бросается в глаза. Моноячейки имеют форму квадрата со срезанными углами и однородную поверхность. Связано это с особенностями производства и кристаллической структуры монокристаллов. При выращивании кристаллов кремния получаются заготовки цилиндрической формы, которые после дальнейшей обработки нарезаются на такие «псевдоквадратные» пластины. А равномерность поверхности определяется строгой кристаллической структурой заготовки.

Поликристаллические ячейки обладают ровной квадратной формой. При их производстве на промежуточном этапе получают призматические заготовки, которые нарезаются на квадратные (или прямоугольные) пластины. Их внешняя поверхность неоднородна из-за полиструктуры кремния.

Отсюда вытекает первое различие между модулями на моно- и полиячейках. Это плотность заполнения. Поликристаллические элементы заполняют всю полезную площадь батареи, тогда как между моноэлементами остаются незадействованные пустоты. Это означает, что, несмотря на разницу в КПД отдельных ячеек, производительность полимодуля на единицу площади может оказаться выше.

Какие модули выбрать

Выбор оптимального варианта надо производить по сочетанию стоимости, качества и технических показателей. Руководствоваться только конструкцией — неправильно, такой подход может стать причиной нерационального расхода денег. Надо произвести потребностей дома в электроэнергии, прибавить необходимый запас на непредвиденные ситуации и на падение производительности с увеличением срока службы.

Вы уже приняли для себя решение о покупке солнечной электростанции, но не уверены что лучше моно или поликристалл? В этой статье мы разберем все плюсы и минусы технологий.

Поликристаллические солнечные панели. Мифы и заблуждения

Конечно, каждый продавец и производитель заинтересован продать именно свой товар, а поэтому относительно некоторых технологий на рынке сформировались устойчивые заблуждения. Технология поликристаллического кремния не исключение и имеет характерные отличия от монокристаллического, чистого кремния. Отсюда многие особенности поли – батарей чаще интерпретируются как преимущества. Но так ли это? Вот некоторые утверждения продавцов, продающих солнечные панели
:

  • «Поликристаллический кремний лучше работает в пасмурную погоду!»
  • «Ресурс работы поли — модулей такой же как у монокристалла.»
  • «Поликристаллические солнечные батареи дешевле, а значит доступней»

Стоит заметить, что первое утверждение само по себе говорит о том, что Вы общаетесь не с профессионалом. Кремниевые солнечные батареи в пасмурную погоду имеют практически одинаковые показатели, не зависящие от технологии. Таким качеством, как «эффективная работа при низкой инсоляции» могут гордиться «не кремниевые», аморфные солнечные батареи, суммарная эффективность которых колеблется около 6-9%.

Poli — элементы действительно немного дешевле, так как процесс производства их не трудоемок и быстр. Но учитывая тот факт, что эффективность их на 15-25% ниже, для достижения выработки сравнимой с MONO — технологией площадь изделий должна быть больше. А значит выше расходы на изделие (стекло, коробка, корпус) и транспортные расходы. Выше становятся и расходы по монтажу изделий, затраты на крепежные элементы и коммутацию. Что будет дешевле для Вас — считайте сами, но первоначальная цена изделий это еще не солнечная электростанция.

Ресурс работы их тоже преувеличен. Поли – кристаллы солнечных элементов снижают эффективность значительно в более короткий период, по сравнению с «чистым кремнием».

Разберем теперь заблуждения, касающиеся mono — кристаллических солнечных элементов.

Солнечные батареи для дома – самой высокой эффективности!

Неоспоримы преимущества монокристаллических солнечных батарей. Но незначительные колебания в цене воспринимаются конечным покупателем не всегда правильно. Солнечные батареи для дома
, типа mono, действительно немного дороже и встречается не у всех производителей и продавцов.

Панели из монокристаллического кремния имеют ряд преимуществ:

  • Более компактные габаритные размеры на Ватт вырабатываемой мощности;
  • Продолжительный ресурс эксплуатации с минимальной потерей эффективности кристалла (не более 20%, за 25 лет);
  • Наивысшую эффективность преобразования энергии (из солнечной в электрическую).

Разве этого недостаточно, что бы сделать выбор в сторону более совершенной и эффективной технологии?

Пленочные солнечные батареи основные отличия

Можно сразу понять, что пленочные рулонные солнечные батареи имеют большое количество отличий от кристаллических вариантов

Первое на что следует обратить внимание, это их толщина, она составляет меньше 1мкм, кроме того они очень гибкие, это качество позволяет расположить их на любых поверхностях, даже на цилиндрических

Кроме этих достоинств пленочные батареи обладают следующими преимуществами:

  • Они сохраняют рабочие параметры даже при рассеянном свете, как итог их суммарная энергия повышается на 15% по отношению к кристаллическим разновидностям;
  • Обладают низкой себестоимостью, а значит, их покупка будет бюджетной;
  • Их работа в высокомощных энергосистемах более эффективна;
  • В условиях жаркого климата, батареи не снижают своей продуктивности;
  • Имеют высокий показатель поглощения солнечного спектра в оптическом виде.

Конечно не смотря на все достоинства, как и любая другая установка, пленочные батареи обладают некоторыми недостатками. Сюда можно занести большие размеры, по отношению к кристаллическим панелям, пленочные занимают площадь практически в 3 раза больше. Еще одним недостатком станет то, что для использования таких батарей требуются контроллеры высоковольтного типа.

Особенности монокристаллических панелей

Монокристаллическая система представляет собой десятки фотоэлементов, объединенных в единую панель. Кристаллы получают путем выращивания — по методу Чохальского. Каждый из них закреплен на стеклопластиковой основе, которая защищает от пыли и влажности. Материал элементов — очищенный кремний. Светочувствительные ячейки ориентированы в одну сторону, за счет чего КПД монокристаллических панелей выше, чем поликристаллических. Другие особенности:

продолжительность непрерывной эксплуатации — не менее 20 лет;

КПД монокристаллов — в среднем до 20–22 % (без учета потерь полученной электроэнергии), в отдельных случаях — до 20 %;

уровень поглощения выше, чем в поликристаллических панелях;

Единственный минус монокристаллических систем — более высокая стоимость, впрочем, затраты на их приобретение быстро окупаются

При дефиците площади, когда крайне важно добиться максимального количества энергии с каждого квадратного метра, подобное решение предпочтительнее.

Особенности поликристаллических панелей

Поликристаллы получают путем постепенного охлаждения расплавленного кремния. Такая технология обходится дешевле, чем искусственное выращивание монокристаллов, правда, на краях поликристаллов может присутствовать зернистость, что приводит к снижению их эффективности. Принципиальное отличие от монокристаллических — неоднородная структура и окрас. Это обусловлено примесями и тем, что в системе содержатся кристаллы разного типа. Особенности:

КПД меньший, чем у монокристаллических элементов — до 17-18 %;

доступная цена — производство поликристаллических панелей менее затратное;

скорость утраты мощности (деградация) поликристаллов меньше, чем у монокристаллов.

Таким образом, если стоит задача получить определенное количество электроэнергии, при использовании поликристаллических панелей потребуется большая площадь. Есть мнение, что их выгоднее использовать в регионах с преобладанием пасмурных дней — при недостаточном количестве солнца поликристаллы дают больше энергии, чем монокристаллы.

Сравнение основных характеристик монокристаллических и поликристаллических элементов

Каждая из систем имеет свои плюсы и минусы. Как определить, что предпочтительнее, моно- или поликристаллы? Предлагаем вашему вниманию сравнительную таблицу, в которой рассмотрены ключевые характеристики каждого из вариантов:

Параметр

Монокристаллы

Поликристаллы

Вывод

Температурный коэффициент

0,45 %

0,45 %

Снижение мощности в системах обоих типов происходит практически одинаково

Скорость деградации

На 3 % в первый год эксплуатации, в последующие — на 0,71 %.

На 2 % в первый год эксплуатации, на 0,67 % в последующие годы.

Разница несущественна, поэтому ею можно пренебречь.

Цена

Высокая стоимость, обусловлена сложностью производства.

На 10-15 % дешевле, чем монокристаллические элементы.

Для многих цена оказывается решающим доводом в пользу поликристаллических панелей.

Фоточувствительность (при уровне освещенности 600 Вт/м
2

При одинаковой мощности модулей разница не превышает 10 %.

По сути этим показателем можно пренебречь.

Годовая выработка

По данным лаборатории PHOTON она незначительно выше (не более 2 %) у монокристаллов. Однако более подробные исследования показали, что имеет значение не только тип панели, но и бренд.

Важнее свойства конкретной солнечной батареи — именно они являются ключевым критерием выбора.

При выборе солнечных панелей необходимо обращать внимание не только на тип фотоэлементов, но и на другие критерии: соотношение цены и эффективности, заявленный ресурс (гарантийный срок), напряжение при максимальной мощности, комплектацию.

Бывают ли дешевые солнечные панели

Специалисты и ученые стремятся создать батареи, которые станут широко доступными для всего населения. Небольшими, но успешными шагами они приближаются к этой цели и при этом каждый раз совершенствуют материалы, которые используются в данной технологии. Конечно, существуют и такие производители, которые халатно относятся к товару, который предлагают покупателям и заведомо продают низкокачественную продукцию. Именно в этом заключается основная проблема, если вы вдруг захотели приобрести недорогую солнечную батарею.

Не только жители РФ, но и стран Европы убедились в том, что недорогие установки предлагают китайские производители. Можно заметить, что именно китайские производители заполонили рынок солнечных батарей, заставив при этом признать себя банкротами многие крупные компании, которые просто не выдержали конкуренции с китайцами.

Так, например вы должны знать, какие товары могут быть бюджетными, а какие нет. Дешевые монокристаллические панели найти вряд ли удастся, так как эти типы включают в себя самые мощные элементы

Поэтому очень важно знать какие характеристики включает в себя установка

С другой стороны существуют компании гиганты, которые благодаря субсидиям государства снижают стоимость на те солнечные батареи, которые они производят. К таким можно отнести крупные немецкие и конечно же российские производства. Если же вы решились на приобретение китайской продукции, то лучше отдать предпочтение какой-то известной фирме, которая уже оправдала свое имя на рынке.

Что такое солнечная батарея? Это генератор фотоэлектрического типа с постоянным током, который преобразует солнечную энергию в электрическую. В таких батареях используются кремниевые модули -полупроводники.

Для того чтобы выбрать солнечную батарею для дома вам потребуется обратить внимание на несколько наших советов. А именно:

А именно:

Во время приобретения системы солнечной батарей, учтите, что она должна подходит к вашему дому. Во-первых, большую роль играет климат вашей местности. От него будет зависеть продолжительность солнечного света над домом и естественно и время накопительного режима. Для того чтобы определить насколько ваша территория подходящая потребуется воспользоваться картой освещенности.
Учтите то количество тепла, которое вы желаете получить в конечном итоге. Самым оптимальным вариантом станет батарея, которая сможет покрыть примерно 40-80 потребностей в тепле. Системы, которые обладают меньшей эффективностью, будут стоить на порядок дороже. Так же нужно учесть проектировку и возможности всей системы. Это сможет гарантировать вам устойчивость установки при форс-мажорных случаях

Все эти расчеты лучше доверит специалистам.
Обязательно обратите внимание на изготовителя батареи, а так же на материал, который использовался в производстве фотоэлектронного элемента модуля. Здесь может быть как моно, так и поликристаллический кремний

Именно от этих качеств будет зависеть не только цена, но и КПД, а так, же срок службы установки.

Следуя этим советам, вы сможете подобрать именно тот тип установки, который подойдет именно к вашей территории. Но все, же лучше чтобы вашими расчетами занимались люди связанные с данной сферой деятельности.

Поликристаллы и применение солнечных батарей

Монокристаллические пластины усовершенствованы и превосходят поликристаллы.
Из-за гибкого строения их можно размещать на кровле дома или беседки.

Поликристаллические элементы хороши для уличной станции,
так как их устанавливают только на ровную поверхность, для них необходимо присмотреть отдельное место на садовом участке. При размещении в беседке не допускается застекление панелей, так как от этого происходит снижение КПД. Коэффициент полезного действия у серийно выпускающихся панелей составляет примерно 18%, что ниже монокристаллических. Поликристаллические пластины несут потери КПД в основном из-за неоднородности поверхности.

Гибкую монокристаллическую пластину удобно

Сравнение монокристаллических и

Итак, какая солнечная батарея лучше — монокристаллическая или поликристаллическая? Чтобы ответить на этот вопрос, нужно сначала разобраться, а чем же они отличаются?

На фото ниже представлены два основных типа:

Первое, что бросается в глаза, это внешний вид.
У монокристаллических элементов углы скругленные и поверхность однородная. Скругленные углы связаны с тем, что при производстве монокристаллического кремния получают цилиндрические заготовки. Однородность цвета и структуры монокристаллических элементов связана с тем, что это один выращенный кристалл кремния, а кристаллическая структура является однородной.

В свою очередь, поликристаллические элементы имеют квадратную форму из-за того, что при производстве получают прямоугольные заготовки. Неоднородность цвета и структуры поликристаллических элементов связана с тем, что они состоят из большого количества разнородных кристаллов кремния, а также включают в себя незначительное количество примесей.

Второе и наверное главное отличие — это эффективность преобразования солнечной энергии.
Монокристаллические элементы и соответственно панели на их основе имеют на сегодняшний день наивысшую эффективность — до 22% среди серийно выпускаемых и до 38% у используемых в космической отрасли. Монокристаллический кремний производится из сырья высокой степени очистки (99,999%).

Серийно выпускаемые поликристаллические элементы имеют эффективность до 18%. Более низкая эффективность связана с тем, что при производстве поликристаллического кремния используют не только первичный кремний высокой степени очистки, но и вторичное сырье (например, переработанные солнечные панели или кремниевые отходы металлургической промышленности). Это приводит к появлению различных дефектов в поликристаллических элементах, таких как границы кристаллов, микродефекты, примеси углерода и кислорода.

Эффективность элементов в конечном счете отвечает за физический размер солнечных панелей. Чем выше эффективность, тем меньше будет площадь панели при одинаковой мощности.

Третье отличие — это цена солнечной батареи.
Естественно, цена батареи из монокристаллических элементов немного выше в расчете на единицу мощности. Это связано с более дорогим процессом производства и применением кремния высокой степени очистки. Однако это различие незначительно и составляет в среднем около 10%.

Итак, перечислим основные отличия монокристаллических и поликристаллических солнечных батарей:

Внешний вид.
Эффективность.
Цена.

Как видно из этого перечня, для солнечной электростанции не имеет ни какого значения, какая солнечная панель будет использоваться в ее составе. Главные параметры — напряжение и мощность солнечной панели не зависят от типа применяемых элементов и зачастую можно найти в продаже панели обоих типов одинаковой мощности. Так что окончательный выбор остается за покупателем. И если его не смущает неоднородный цвет элементов и немного большая площадь, то вероятно он выберет более дешевые поликристаллические солнечные панели. Если же эти параметры имеют для него значение, то очевидным выбором будет немного более дорогая монокристаллическая солнечная панель.

В заключении хочется отметить, что по данным Европейской ассоциации EPIA в 2010 году производство солнечных батарей по типу применяемого в них кремния распределилось следующим образом:

1. поликристаллические — 52,9%

2. монокристаллические — 33,2%

3. аморфные и пр. — 13,9%

Т. е. поликристаллические солнечные батареи по объему производства занимают лидирующие позиции в мире.

Цена

Солнечные батареи на разных фотоэлементах обладают и различной стоимостью. Расценки на монокристаллические панели несколько выше (обычно в пределах 10%), что связано с более дорогостоящим технологическим процессом и необходимостью использовать кремний высокой чистоты.

Таким образом, прежде чем решать, какие именно модули выбрать, нужно определиться с условиями их использования, местом установки и размерами бюджета. По сути, солнечной электростанции безразлично, какая именно панель производит для нее ток, главное – показатели выходной мощности и напряжения. А эти значения могут быть одинаковыми и для изделий на разных типах ячеек, отличаться они будут только площадью поверхности. Поэтому если габариты не критичны, то можно приобрести солнечные батареи той же производительности (на поликристаллах), но с чуть большей площадью, стоить они будут несколько дешевле.

Характеристика тонкопленочных панелей.

Практика использования моно и поликристаллических фотомодулей в солнечных батареях

Производственный процесс тонкопленочных панелей заключается в вакуумном напылении фотоэлектрического материала в виде тонкой пленки на подложку-основу. В зависимости от требуемых характеристик используются различные типы подложек и виды напыляемых веществ. В частности, материалами для напыления тонких пленок служат: аморфный кремний (a-Si), теллурид кадмия (CdTe), медь, индий, галлий, соединения селена — селениды (CIS/CIGS), различные органические элементы (OPC)

КПД тонкопленочных солнечных батарей зависит от качества и чистоты технологического процесса и составляет от 7 до 13%. При развитии технологии и внедрении инновация прогнозируемый рост КПД составит 3%. В 2000-х годах рынок тонкопленочных панелей значительно вырос. Это связано с развитием технологии напыления тонких пленок и развитием уровня производства в целом. Таким образом, купить солнечные батареи становится все проще, а их цена становится все доступнее.

Достоинства тонкопленочных батарей:

— низкая себестоимость производства, следовательно, более низкая цена на панели в целом.

— эстетичный внешний вид конструкции, обусловленный высокой однородностью.

— возможность изготовления гибких конструкций

— количество потерь производительности при нагреве или непрямом освещении снижено.

При этом тонкопленочные конструкции имеют и ряд недостатков:

— необходима достаточно большая площадь монтажа конструкции для обеспечения преобразования требуемого количества солнечной энергии.

— установка большего количества панелей требует дополнительной крепежной фурнитуры и повышения затрат на установку.

— срок службы таких панелей ниже, чем у кристаллических аналогов.

И все же какие панели наиболее являются наиболее подходящими для использования именно в частном домовладении для обеспечения электроэнергией дома или коттеджа?

В решении данного вопроса не помешает консультация специалистов в области фотоэлектронных преобразователей солнечной энергии и проведение количественной и качественной оценки всех факторов: от площади до освещения поверхности монтажа. Такая консультация позволит вам определить, что именно вам требуется.

При недостатке площадей для установки обратите внимание на монокристаллические батареи с максимальным КПД. К сожалению на сегодняшний момент на российском рынке фотоэлектронных товаров, в частности, преобразователей, выбор элементов ограничен и, скорее всего, как и выбор модулей требуемой конструкции или состава пленки

В таком случае вам может потребоваться произвести заказ модулей из-за рубежа, либо купить их в России по предварительному заказу. Однако в данном случае цена на батареи будет выше.

Если более важное значение имеет именно ценовой диапазон материалов и работ, то лучший вариант – использование конструкций на поликристаллических пластинах. Они позволят обеспечить достаточно хорошие показатели по производительности и при этом сэкономить некоторое количество средств

При выборе тонкопленочных панелей не забывайте учитывать требования по монтажу. Стоимость дополнительных монтажных работ значительно повлияет на итоговую смету.

Определившись с типом и размерами солнечных батарей, вам останется осуществить закупку требуемых блоков, произвести монтаж и наслаждать использованием одного из самых экологически безопасных способов получения электроэнергии для бытовых нужд.

Солнечные панели

  • долговечны (срок службы составляет 25-30 лет)
  • просты в монтаже
  • просты в обслуживании
  • надежны и эффективны

Производство модулей основано на применении кремния. Кремний — второй элемент после кислорода по распространенности в земной коре. В природе в чистом виде кремний найти трудно, чаще всего он встречается в соединении с кислородом – кремнезем (Si02). Этот химический элемент обладает высокой реактивностью, и является в чистом виде важнейшим полупроводником в современной радиоэлектроники, вычислительной технике, альтернативной энергетике. В зависимости от технологий изготовления существуют несколько видов панелей, которые постоянно совершенствуются. Наиболее распространенными видами модулей являются кристаллические и тонкопленочные или аморфные панели.  Кристаллические фотоэлектрические элементы бывают монокристаллические или поликристаллические

Практика использования моно и поликристаллических фотомодулей в солнечных батареях

Монокристаллические панели

Монокремниевая пластина представляет собой один кристалл в виде цилиндрических максимально чистых кремниевых слитков, из которых путем резки получают прямоугольные кремневые диски по методу Чохральского. Монокристаллические элементы ― это квадраты с закругленными или срезанными углами,однородные по структуре, толщиной 0,2 — 0,3 мм, темно-синего или черного цвета с антиотражающим покрытием. Монокристаллические солнечные модули отличаются высокой эффективностью, компактностью, обладают наибольшим сроком службы.

Технология изготовления солнечных батарей из монокристаллических элементов достаточно дорогая. Это связано с использованием кремния высокой степени очистки.

Поликристаллические панели

Солнечные пластины из поликремния производятся путем постепенного охлаждения кремневой субстанции. Такая технология производства требует меньше энергозатрат и кремния не самой высокой степени очистки. Обрабатываются блоки поликристаллов так же, как и монокристаллическая заготовка. Поликристаллические панели представляют собой блок кристаллов разного направления, на срезе некоторые кристаллы четко видны, это правильные квадраты синего цвета с антиотражающим покрытием или серебристо-серые без покрытия, толщиной 0,2 – 0,3мм. КПД таких батарей более низкий (от 13% до 18%).

Тонкопленочные (аморфные) солнечных панелей

Основное отличие тонкопленочных или аморфных панелей состоит в напылении тонкого слоя аморфного кремния на подложку. Подкладочным материалом может служить либо гибкая (пластик) либо жесткая (стекло или металл) основа. Аморфные панели от других видов можно отличить по их темно-серому цвету, они гибкие, компактные и легкие. Стоимость ниже  традиционных кремниевых. Такие батареи прекрасно работают при большой запыленности воздуха, им достаточно рассеянного света.  Последние инновации в разработке кремниевой пленки привели к производству эффективных многопереходных солнечных батарей, которые содержат несколько слоев кремния. Разные полупроводниковые материалы поглощают солнечный свет по-разному, таким образом, захватив весь спектр излучений.

Конструкция и применение

По устройству все солнечные преобразователи разделяют на монокристаллические и поликристаллические. От конструктивного исполнения каждой панели зависит ее эффективность и стоимость. Мировые производители этих устройств используют в качестве рабочего тела кремний, теллурид кадмия и соединения на основе меди, индия, галлия, селена. Последними достижениями в этой области считаются батареи, рабочим материалом которых является арсенид галлия.

Практика использования моно и поликристаллических фотомодулей в солнечных батареях

Отечественная промышленность для производства солнечных генераторов использует преимущественно кремниевые полупроводниковые пластины. Готовые модули, предназначенные для выработки электрического тока, объединяют своей конструкцией набор ячеек. Плоские панели устанавливают на специальные стеллажи с поворотными устройствами, при помощи которых в течение дня устанавливается максимально возможный угол падения лучей солнца на полупроводник. Дешевым, но менее эффективным вариантом является использование неподвижных конструкций, настроенных на определенный постоянный угол.

Важным элементом любой солнечной сборки являются аккумуляторы, которые накапливают электрическую энергию для использования ее ночью или в мало освещенное время суток. Дальше она из аккумуляторов поступает непосредственно в нагрузку, либо сначала на инвертор 12(24)–220 В, а затем к потребителю, в зависимости от его типа.

Практика использования моно и поликристаллических фотомодулей в солнечных батареях

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Генерировать солнечную энергию выгодно там, где в году много ярких дней. Большинство регионов РФ малопригодны для использования только энергии солнца. Солнечные генераторы чаще применяются лишь как добавочные устройства энергоснабжения.

Заключение

Несмотря на то, что между разными типами модулей есть различия, нет однозначного ответа, какой солнечный модуль удовлетворяет всем возможным требованиям лучше всего. Тип модуля выбирается в зависимости от характеристик вашего объекта и требований к установке.

При выборе модуля часто задается вопрос: какая солнечная батарея лучше – монокристаллическая или поликристаллическая, а может аморфная? Ведь они самые распространенные в наш век. Чтобы найти ответ, было проведено множество исследований. Рассмотрим, что же показали результаты:

КПД и срок службы

Монокристаллические элементы имеют КПД около 17-22%, сроки их службы не менее 25 лет. Эффективность поликристаллических может достигать 12-18%, служат они тоже не менее 25 лет. КПД аморфных составляет 6-8% и снижается гораздо быстрее кристаллических, работают они не более 10 лет.

Температурный коэффициент

В реальных условиях использования солнечные батареи нагревается, что приводит к снижению номинальной мощности на 15-25%. Средний температурный коэффициент для поли и моно составляет -0,45%, аморфного -0,19%. Это значит, что при повышении температуры на 1°C от стандартных условий кристаллические батареи будут менее производительными, чем аморфные.

Потеря эффективности

Деградация солнечных монокристаллических и поликристаллических модулей зависит от качества исходных элементов – чем больше в них бора и кислорода, тем быстрее снижается КПД. В поликремниевых пластинах меньше кислорода, в монокремниевых – бора. Поэтому при равных качествах материала и условий использования особой разницы между степенью деградации тех и других модулей нет, в среднем она составляет около 1% в год. В производстве аморфных батарей используется гидрогенизированный кремний. Содержанием водорода обусловлена его более быстрая деградация. Так, кристаллические деградируют на 20% через 25 лет эксплуатации, аморфные быстрее в 2-3 раза. Однако некачественные модели могут потерять эффективность на 20% уже в первый год использования. Это стоит учесть при покупке.

Стоимость

Тут превосходство полностью на стороне аморфных модулей – их цена ниже, чем кристаллических, из-за более дешевого производства. Второе место занимают поли, моно же самые дорогие.

Размеры и площадь установки

Монокристаллические батареи более компактны. Для создания массива требуемой мощностью понадобится меньшее количество панелей по сравнению с другими видами. Так что при установке они займут немного меньше места. Но прогресс не стоит на месте, и по соотношению мощность/площадь поликристаллические модули уже догоняют моно. Аморфные же пока отстают от них – для их установки понадобится в 2,5 раза больше места.

Светочувствительность

Здесь лидируют аморфно-кремниевые модули. У них лучший коэффициент преобразования солнечной энергии из-за водорода в составе элемента. Поэтому они, по сравнению с кристаллическими, в условиях слабой освещенности работают эффективнее. Моно и поли, при плохом освещении работают примерно одинаково – значительно реагируют на изменение интенсивности света.

Годовая выработка

В результате тестирования модулей разных производителей было установлено, что монокристаллические за год вырабатывают больше электроэнергии, чем поликристаллические. А те в свою очередь производительнее, чем аморфные, несмотря на то, что последние вырабатывают энергию и при слабой освещенности.

Можно сделать вывод, что солнечные батареи моно и поли имеют небольшие, но важные различия. Хотя mono все-таки эффективнее и отдача от них больше, но poly все равно будут пользоваться большей популярностью. Правда, это зависит от качества продукции. Тем не менее, большинство крупных солнечных электростанций собраны на базе полимодулей. Связано это с тем, что инвесторы смотрят на общую стоимость проекта и сроки окупаемости, а не на максимальную эффективность и долговечность.

Теперь об аморфных батареях. Начнем с преимуществ: метод их изготовления самый простой и малобюджетный, потому что не требуется резка и обработка кремния. Это отражается в невысокой стоимости конечной продукции. Они неприхотливы – их можно установить куда угодно, и не привередливы – пыль и пасмурная погода им не страшны.

Однако у аморфных модулей есть и недостатки, перекрывающие их достоинства: по сравнению с вышеописанными видами, у них самый низкий КПД, они быстро портятся – эффективность снижается на 40% менее чем за 10 лет, и требуют много места для установки.