ГИДРАВЛИЧЕСКИЙ РАСЧЕТ ТЕПЛОВЫХ СЕТЕЙ

Актуальный вопрос, какой же диаметр трубопровода применить

Принципиальная схема пароконденсатного тракта выглядит так.  Работает  котельная установка, которая вырабатывает пар,определенного параметра  в определенном  количестве.   Далее открывается главная  паровая задвижка и пар поступает  в пароконденсатную систему,  двигаясь в сторону  потребителей.  И тут появляется актуальный вопрос, какой же диаметр трубопровода  применить?

Если взять трубу слишком большого диаметра, то это грозит:

  1. Увеличение стоимости монтажа
  2.  Большие потери тепла в окружающую среду
  3. Большое количество конденсата, а значит и большое количество конденсатных карманов, конденсатоотводчиков, вентилей  и тп

Если взять трубу слишком малого диаметра, то это грозит:

  1. Потеря давления ниже расчётного
  2. Повышенной скоростью пара, шумы в паропроводе
  3. Эрозийный износ, более частая замена оборудования из-за гидроударов

Расчёт диаметра паропровода

Существует два метода для выбора диаметра паропровода: первый  это метод падения давления, а второй более простой и его применяет большинство из нас –  метод  скоростей. 

Для того что бы вы не тратили своё время на поиск таблицы по расчёту методом скоростей, мы для вашего удобства выложили на этой странице эту информацию. Опубликованные рекомендации взяты  из каталога завода изготовителя промышленной трубопроводной арматуры АДЛ .

Пропускная способность канализационной трубы

Пропускная способность канализационной трубы – важный параметр, который зависит от типа трубопровода (напорный или безнапорный). Формула расчета основана на законах гидравлики. Помимо трудоемкого расчета, для определения пропускной способности канализации используют таблицы.

ГИДРАВЛИЧЕСКИЙ РАСЧЕТ ТЕПЛОВЫХ СЕТЕЙ

Формула гидравлического расчета

Для гидравлического расчета канализации требуется определить неизвестные:

  1. диаметр трубопровода Ду;
  2. среднюю скорость потока v;
  3. гидравлический уклон l;
  4. степень наполнения h/ Ду (в расчетах отталкиваются от гидравлического радиуса, который связан с этой величиной).
Таблица 3. Самоочищающая скорость канализационных стоков в зависимости от значения условного прохода трубы
Ду, мм h/Ду Самоочищающая скорость, м/с
150-250 0,6 0,7
300-400 0,7 0,8
450-500 0,75 0,9
600-800 0,75 0,1
900+ 0,8 1,15

Кроме того, существует нормированное значение минимального уклона для труб с малым диаметром: 150 мм

(i=0.008) и 200 (i=0.007) мм.

Формула объемного расхода жидкости выглядит так:

q=a•v,

где a — это площадь живого сечения потока,

v – скорость потока, м/с.

Скорость рассчитывается по формуле:

v= C√R*i,

где R – это гидравлический радиус;

С – коэффициент смачивания;

i — уклон.

Отсюда можно вывести формулу гидравлического уклона:

i=v2/C2*R

По ней определяют данный параметр при необходимости расчета.

С=(1/n)*R1/6,

где n – это коэффициент шероховатости, имеющий значения от 0,012 до 0,015 в зависимости от материала трубы.

Гидравлический радиус считают равным радиусу обычному, но только при полном заполнении трубы. В остальных случаях используют формулу:

R=A/P,

где А – это площадь поперечного потока жидкости,

P– смоченный периметр, или же поперечная длина внутренней поверхности трубы, которая касается жидкости.

ГИДРАВЛИЧЕСКИЙ РАСЧЕТ ТЕПЛОВЫХ СЕТЕЙ

Таблицы пропускной способности безнапорных труб канализации

В таблице учтены все параметры, используемые для выполнения гидравлического расчета. Данные выбирают по значению диаметра трубы и подставляют в формулу. Здесь уже рассчитан объемный расход жидкости q, проходящей через сечение трубы, который можно принять за пропускную способность магистрали.

Кроме того, существуют более подробные таблицы Лукиных, содержащие готовые значения пропускной способности для труб разного диаметра от 50 до 2000 мм.

ГИДРАВЛИЧЕСКИЙ РАСЧЕТ ТЕПЛОВЫХ СЕТЕЙ

Таблицы пропускной способности напорных канализационных систем

В таблицах пропускной способности напорных труб канализации значения зависят от максимальной степени наполнения и расчетной средней скорости сточной воды.

Таблица 4. Расчет расхода сточных вод, литров в секунду
Диаметр, мм Наполнение Принимаемый (оптимальный уклон) Скорость движения сточной воды в трубе, м/с Расход, л/сек
100 0,6 0,02 0,94 4,6
125 0,6 0,016 0,97 7,5
150 0,6 0,013 1,00 11,1
200 0,6 0,01 1,05 20,7
250 0,6 0,008 1,09 33,6
300 0,7 0,0067 1,18 62,1
350 0,7 0,0057 1,21 86,7
400 0,7 0,0050 1,23 115,9
450 0,7 0,0044 1,26 149,4
500 0,7 0,0040 1,28 187,9
600 0,7 0,0033 1,32 278,6
800 0,7 0,0025 1,38 520,0
1000 0,7 0,0020 1,43 842,0
1200 0,7 0,00176 1,48 1250,0

Соответствие диаметра труб объему носителя

В качестве теплоносителя в большинстве систем отопления используется вода. Она нагревается центральным котлом. В качестве источника энергии используется газ, электричество, горючие жидкости или твердое топливо. Этот узел – сердце системы отопления. Обогревательный узел, магистрали, запоры и отдающие тепло радиаторы образуют сложную схему, в которой каждый элемент должен быть скрупулезно выверен. Прогнозирование энергетических затрат и необходимой мощности котла, расчет трубы отопления, выбор носителя и типа топлива оптимизируют расходы при строительстве и эксплуатации. Изначальная предусмотрительность застрахует от скорого ремонта и необходимости доработки уже запущенной в действие отопительной магистрали.

ГИДРАВЛИЧЕСКИЙ РАСЧЕТ ТЕПЛОВЫХ СЕТЕЙУстройство автономной системы отопления

Расчет труб для отопления частного дома можно заказать профессионалам, доверившись опыту. Самостоятельно вывести показатели помогают сантехнические «калькуляторы»: программы, производящие расчет трубы для отопления, предлагаются на сайтах производителей и магазинов. В калькуляторы заложены усредненные показатели типовых радиаторов и труб: владельцу нужно указать метраж, высоту потолков и тип постройки, чтобы система сама сделала расчет регистров из гладких труб для отопления или емкости котла. Недостаток калькуляторов в предварительной настройке под нужды конкретного сервиса. Вряд ли владельцы портала разместят программу, которая рекомендует продукцию конкурентов, даже если основанный на реальных характеристиках расчет сечения трубы отопления это предусматривал.

Нюансы при выборе диаметра труб системы отопления

Описание диаметров труб

При выборе диаметра труб отопления принято ориентироваться на следующие характеристики:

  1. внутренний диаметр – главный параметр, определяющий размер изделий;
  2. вешний диаметр – в зависимости от этого показателя происходит классификация труб:
  • малый диаметр – от 5 до 102 мм;
  • средний – от 102 до 406 мм;
  • большой – более 406 мм.
  1. условный диаметр – значение диаметра, округленное до целых чисел и выражающееся в дюймах (например, 1″, 2″и т. д.), иногда в долях дюйма (например, 3/4″).

Увеличенный или малый диаметр

Если вас интересует, как рассчитать диаметр трубы отопления, обратите внимание на наши рекомендации. Наружное и внутреннее сечение трубы будут отличаться на величину, равную толщине стенки этой трубы

Причем толщина разнится в зависимости от материала изготовления изделий.

ГИДРАВЛИЧЕСКИЙ РАСЧЕТ ТЕПЛОВЫХ СЕТЕЙ

График зависимости теплового потока от наружного диаметра трубы отопления

Профессионалы полагают, что при монтаже принудительной системы отопления диаметр труб должен быть как можно более малым. И это неспроста:

  1. чем меньше диаметр пластиковых труб для системы отопления, тем меньшее количество теплоносителя нужно нагревать (экономия времени на нагрев и денег на энергоносители);
  2. с уменьшением сечения труб замедляется скорость движения воды в системе;
  3. трубы малого диаметра проще монтировать;
  4. трубопроводы из труб небольших диаметров являются экономически более выгодными.

Однако это не означает, что нужно вопреки проекту отопительной системы приобретать трубы диаметром меньшим, чем получился у при расчете. Если трубы будут чересчур малы, это сделает работу системы шумной и малоэффективной.

Существуют конкретные значения, описывающие идеальную скорость движения теплоносителя в системе отопления – это интервал от 0,3 до 0,7 м/с. Советуем равняться именно на них.

Практическая оценка необходимого размера трубы трубопровода, паропровода по расходу и давлению насыщенного пара в диапазоне 0,4-14 бар приборного давления и Ду15-300 мм. Таблица.

  1. В целом, спокойной (вполне достаточной) для насыщенного пара является скорость 25 м/с. Максимальные допустимые скорости пара от проекта dpva.ru
  2. Таблица практически пригодна для любых сортаментов труб, но не любой сортамент пригоден для пара. В целом — пар довольно неприятная рабочая среда, но при этом в большинстве случаев используются трубы из обычной углеродистой стали, хотя нержавеющая сталь тоже часто применяется. Обзор обозначений сталей от проекта dpva.ru Обзор стандартов стальных труб от проекта dpva.ru.
Расход насыщенного пара (кг/час Другие единицы измерения от проекта dpva.ru)
Давление приборное (бар) Скорость пара (м/с) Условный (номинальный) диаметр трубы мм
15 20 25 32 40 50 65 80 100 125 150 200 250 300
0.4 15 7 14 24 37 52 99 145 213 394 648 917 1606 2590 3680
25 10 25 40 62 92 162 265 384 675 972 1457 2806 4101 5936
40 17 35 64 102 142 265 403 576 1037 1670 2303 4318 6909 9500
0.7 15 7 16 25 40 59 109 166 250 431 680 1006 1708 2791 3852
25 12 25 45 72 100 182 287 430 716 1145 1575 2816 4629 6204
40 18 37 68 106 167 298 428 630 1108 1715 2417 4532 7251 10323
1 15 8 17 29 43 65 112 182 260 470 694 1020 1864 2814 4045
25 12 26 48 72 100 193 300 445 730 1160 1660 3099 4869 6751
40 19 39 71 112 172 311 465 640 1150 1800 2500 4815 7333 10370
2 15 12 25 45 70 100 182 280 410 715 1125 1580 2814 4545 6277
25 19 43 70 112 162 195 428 656 1215 1755 2520 4815 7425 10575
40 30 64 115 178 275 475 745 1010 1895 2925 4175 7678 11997 16796
3 15 16 37 60 93 127 245 385 535 925 1505 2040 3983 6217 8743
25 26 56 100 152 225 425 632 910 1580 2480 3440 6779 10269 14316
40 41 87 157 250 357 595 1025 1460 2540 4050 5940 10479 16470 22950
4 15 19 42 70 108 156 281 432 635 1166 1685 2460 4618 7121 10358
25 30 63 115 180 270 450 742 1080 1980 2925 4225 7866 12225 17304
40 49 116 197 295 456 796 1247 1825 3120 4940 7050 12661 1963 27816
Расход насыщенного пара (кг/час Другие единицы измерения от проекта dpva.ru)
Давление приборное (бар) Скорость пара (м/с) Условный (номинальный) диаметр трубы мм
15 20 25 32 40 50 65 80 100 125 150 200 250 300
5 15 22 49 87 128 187 352 526 770 1295 2105 2835 5548 8586 11947
25 36 81 135 211 308 548 885 1265 2110 3540 5150 8865 14268 20051
40 59 131 225 338 495 855 1350 1890 3510 5400 7870 13761 23205 32244
6 15 26 59 105 153 225 425 632 925 1555 2525 3400 6654 10297 14328
25 43 97 162 253 370 658 1065 1520 2530 4250 6175 10629 17108 24042
40 71 157 270 405 595 1025 1620 2270 4210 6475 9445 16515 27849 38697
7 15 29 63 110 165 260 445 705 952 1815 2765 3990 7390 12015 16096
25 49 114 190 288 450 785 1205 1750 3025 4815 6900 12288 19377 27080
40 76 177 303 455 690 1210 1865 2520 4585 7560 10880 19141 30978 43470
8 15 32 70 126 190 285 475 800 1125 1990 3025 4540 8042 12625 17728
25 54 122 205 320 465 810 1260 1870 3240 5220 7120 13140 21600 33210
40 84 192 327 510 730 1370 2065 3120 5135 8395 12470 21247 33669 46858
10 15 41 95 155 250 372 626 1012 1465 2495 3995 5860 9994 16172 22713
25 66 145 257 405 562 990 1530 2205 3825 6295 8995 15966 25860 35890
40 104 216 408 615 910 1635 2545 3600 6230 9880 14390 26621 41011 57560
14 15 50 121 205 310 465 810 1270 1870 3220 5215 7390 12921 20538 29016
25 85 195 331 520 740 1375 2080 3120 5200 8500 12560 21720 34139 47128
40 126 305 555 825 1210 2195 3425 4735 8510 13050 18630 35548 54883 76534

Выбор диаметра паропровода

Декабрь 15, 2018

Актуальный вопрос, какой же диаметр трубопровода  применить?

Принципиальная схема пароконденсатного тракта выглядит так.  Работает  котельная установка, которая вырабатывает пар,определенного параметра  в определенном  количестве.   Далее открывается главная  паровая задвижка и пар поступает  в пароконденсатную систему,  двигаясь в сторону  потребителей.  И тут появляется актуальный вопрос, какой же диаметр трубопровода  применить?

Если взять трубу слишком большого диаметра, то это грозит:

  1. Увеличение стоимости монтажа
  2.  Большие потери тепла в окружающую среду
  3. Большое количество конденсата, а значит и большое количество конденсатных карманов, конденсатоотводчиков, вентилей  и тп

Если взять трубу слишком малого диаметра, то это грозит:

  1. Потеря давления ниже расчётного
  2. Повышенной скоростью пара, шумы в паропроводе
  3. Эрозийный износ, более частая замена оборудования из-за гидроударов

Расчёт диаметра паропровода

Существует два метода для выбора диаметра паропровода: первый  это метод падения давления, а второй более простой и его применяет большинство из нас –  метод  скоростей. 

Для того что бы вы не тратили своё время на поиск таблицы по расчёту методом скоростей, мы для вашего удобства выложили на этой странице эту информацию. Опубликованные рекомендации взяты  из каталога завода изготовителя промышленной трубопроводной арматуры АДЛ .

Рекомендации по установки дренажных карманов

Пусковые нагрузки на паропровод очень высоки, так как горячий пар поступает в холодный не прогретый трубопровод и пар начинает активно конденсировать. Согласно СНиП 2.04.07-86* Пункт 7.26  требуется производить дренажные карманы на прямых участках паропроводов через каждые 400—500 м и через каждые 200—300 м при встречном уклоне должен предусматриваться дренаж паропроводов.

Разные производители трубопроводной арматуры  дают свои рекомендации по поводу интервала установки конденсатоотводчиков. Российский производитель завод АДЛ,опираясь на свой многолетний опыт,  рекомендует производить дренажные карманы с установкой конденсатоотводчиков Стимакс через каждые 30-50м при протяженных линиях трубопровода. При небольших по протяженности линиях рекомендации АДЛ не отличаются от  СНиП 2.04.07-86.

Почему конденсат нужно удалять из паропровода?

При подаче пар развивает очень большую скорости и гонит образующую в нижней части трубы плёнку конденсата по паропроводу со  скоростью 60м/с и выше, образуя волны конденсата гребнеобразные , которые могут перекрыть всё сечение трубы. Пар гонит весь этот конденсат, врезаясь во все преграды на своём пути: фитинги, фильтры, регулирующие клапаны, вентиля. Разумеется, для самого трубопровода не говоря уже об оборудование, это будет сильный гидроудар.

Каков же будет вывод?

  1. Как можно чаще осуществлять дренажные карманы с установкой конденсатоотводчиков.  
  2. Установка фильтров в горизонтальной плоскости, сливной  крышкой вниз для избегания конденсатного кармана
  3. Правильно производить концентрические сужения, избегая конденсатных карманов
  4. Соблюдать уклон для самотечного слива конденсата в дренажные карманы
  5. Установка вентилей вместо шаровых кранов
  • Задвижки с обрезиненным клином серии KR 11|12|15|20
  • Фильтр сетчатый серия IS17
  • Насосные станции «Гранфлоу» серия УНВ DPV
  • Обратный клапан серия RD30
  • Фильтры сетчатые серии IS 15|16|40|17
  • Перепускной клапан «Гранрег» КАТ32
  • Циркуляционный насос «Гранпамп» серии R
  • Обратные клапаны «Гранлок» CVS25
  • Стальные шаровые краны БИВАЛ
  • Фильтр сетчатый серия IS30
  • Оборудование для пара
  • Циркуляционные насосы «Гранпамп» сери IPD
  • Регулятор давления «Гранрег» КАТ41
  • Клапаны предохранительные Прегран КПП 096|095|097|496|095|495
  • Перепускной клапан «Гранрег» КАТ82
  • Стальные шаровые краны БИВАЛ КШТ с редутором
  • Регуляторы давления «Гранрег» КАТ
  • Насосные станции «Гранфлоу» серия УНВ на насосах MHC и ЗМ
  • Задвижка Гранар серия KR15 с пожарным сертификатом
  • Обратный клапан CVS16
  • Перепускной клапан «Гранрег» КАТ871
  • Насосные станции дозирующие — ДОЗОФЛОУ
  • Обратный клапан CVS40
  • Задвижка «Гранар» серия KR17 аттестация по форме FM Global
  • Гранлок CVT16
  • Циркуляционные насосы «Гранпамп» сери IP
  • Регулятор давления «после себя «Гранрег» КАТ160|КАТ80| КАТ30| КАТ41
  • Моноблочные насосы из нержавеющей стали серии МНС 50|65|80|100
  • Задвижка «Гранар» серия KR16 аттестация по форме FM Global
  • Обратный клапан серия RD50
  • Конденсатоотводчики Стимакс А11|A31|HB11|AC11
  • Обратный клапан серия RD18
  • Стальные шаровые краны Бивал КШГ
  • Дисковые поворотные затворы Гранвэл ЗПВС|ЗПВЛ|ЗПТС|ЗПСС
  • Аварийные насосные станции
  • ← Экономия воды
  • Влияние воздуха и газов на теплопередачу →
Instagram строителя, который переехал жить в Таиланд
Adblock
detector