Как рассчитать максимальную нагрузку на фундамент дома

Значение слова Нагрузка электроэнергетической системы

Нагрузка электроэнергетической системы, суммарная электрическая мощность, расходуемая всеми приемниками (потребителями) электроэнергии, присоединёнными к распределительным сетям системы, и мощность, идущая на покрытие потерь во всех звеньях электрической сети (трансформаторах, преобразователях, линиях электропередачи). Зависимость изменения Н. э. с. во времени, т. е. мощности потребителя или силы тока в сети в функции времени, называется графиком нагрузки. Различают индивидуальные и групповые графики нагрузки — соответственно для отдельных потребителей и для групп потребителей. Н. э. с., определяющиеся мощностью потребителей, являются случайными величинами, принимающими различное значение с некоторыми вероятностями. Потребители обычно работают не одновременно и не все на полную мощность, поэтому фактически Н. э. с. всегда меньше суммы индивидуальных мощностей потребителей. Отношение наибольшей потребляемой мощности к присоединённой мощности называют коэффициентом одновременности. Отношение наибольшей нагрузки данной группы потребителей к их установленной мощности называется коэффициентом спроса. При определении Н. э. с. различают среднюю нагрузку, т. е. значение нагрузки энергосистемы, равное отношению выработанной (или использованной) за определенный период времени энергии к длительности этого периода в часах, и среднеквадратичную Н. э. с. за сутки, месяц, квартал, год. Под активной (реактивной) Н. э. с. понимают суммарную активную (реактивную) мощность всех потребителей с учётом её потерь в электрических сетях. Активная мощность Р отдельной нагрузки, группы нагрузок или Н. э. с. определяется как Р = S×cosj, где S = UI — полная мощность (U — напряжение, I — сила тока), cos j — коэффициент мощности, j = arcts Q/P где Q — реактивная мощность нагрузки. Н. э. с. с резко или скачкообразно меняющимся графиком называется толчкообразной нагрузкой. В Н. э. с. при изменении условий работы и нарушениях режима энергосистемы (изменении напряжения, частоты, параметров передачи, конфигурации сети и т.д.) возникают переходные процессы. При изучении этих процессов обычно рассматривают не отдельные нагрузки, а группы нагрузок (узлы нагрузки), присоединённых к мощной подстанции, высоковольтной распределительной сети или линии электропередачи. В состав узлов нагрузок могут включаться также компенсаторы синхронные или отдельные маломощные (значительно меньше нагрузки) генераторы либо небольшие станции. Состав потребителей, принадлежащих к узлу нагрузки, в зависимости от района (город, промышленный или с.-х. район и т.д.) может меняться в довольно широких пределах. В среднем нагрузка для городов характеризуется следующим распределением: асинхронные электродвигатели 50—70%; осветительные приборы 20—30%; выпрямители, инверторы, печи и нагревательные приборы 5—10%; синхронные электродвигатели 3—10%; потери в сетях 5—8%.

  Процессы в узлах нагрузки оказывают влияние на работу энергосистемы в целом. Степень этого влияния зависит от характеристик нагрузки, под которыми обычно понимают зависимости потребляемой в узлах активной и реактивной мощностей, вращающего момента или силы тока от напряжения или частоты. Различают 2 вида характеристик нагрузок — статические и динамические. Статической характеристикой называется зависимость мощности, момента или силы тока от напряжения (или частоты), определяемая при медленных изменениях Н. э. с. Статическая характеристика представляется в виде кривых Р =j1(U); Q = j2 (U); Р = j1(f ) и Q = j2(f ). Эти же зависимости, определённые при быстрых изменениях Н. э. с., называются динамическими характеристиками. Надёжность работы энергосистемы в каком-либо режиме в значительной мере зависит от соотношения Н. э. с. в этом режиме и возможной предельной нагрузки.

  Лит.: Маркович И. М., Режимы энергетических систем, 4 изд., М., 1969; Веников В. А., Переходные электромеханические процессы в электрических системах, М., 1970; Электрические нагрузки промышленных предприятий, Л., 1971; Керного В. В., Поспелов Г. Е., Федин В. Т., Местные электрические сети, Минск, 1972.

  В. А. Веников.

Большая Советская Энциклопедия М.: «Советская энциклопедия», 1969-1978

Вычисление площади фундамента и веса.

Самым важным фактором является грунт под фундамент, он может не выдержать высокой нагрузки. Чтобы этого избежать нужно вычислить полный вес здания, включая фундамент.

Пример вычисления веса фундамента: Вы хотите построить кирпичное здание и подобрали под него ленточный тип фундамента . Фундамент углубляется в грунт ниже глубины промерзания и будет иметь высоту 2 метра.

Затем вычислим длину всей ленты, то есть периметр: P= (a+b)*2=(5+8)*2=26 м, прибавляем длину внутренней стены, 5 метров, в итоге получим общую длину фундамента 31 м.

Далее делаем расчет объема, чтобы это сделать нужно ширину фундамента умножить на длину и высоту, допустим ширина будет 50 см, значит 0,5см*31м*2м= 31 м 2 . Железобетон имеет площадь 2400 кг/м 3 , теперь найдем вес конструкции фундамента: 31м3*2400 кг/м=74 тонны 400 килограмм.

Опорная площадь будет составлять 3100*50=15500 см 2 . Теперь прибавляем вес фундамента к весу здания и делим его на опорную площадь, теперь у вас получилась нагрузка килограмм на 1см 2 .

Ну, а если по вашим расчетам максимальная нагрузка превысила эти типы грунтов, значит меняем размер фундамента, чтобы увеличить его опорную площадь. Если у вас ленточный тип фундамента, то увеличить его опорную площадь можно путем увеличения ширины, а если у вас столбчатый тип фундамента, то увеличиваем размеры столба или их количество. Но следует запомнить, полный вес дома от этого увеличится, поэтому рекомендуется сделать повторный расчет.

1 Нагрузки, учитываемые при расчетах оснований и

фундаментов

Нагрузки,
на которые производится расчет оснований
и фундаментов, определяют по результатам
расчета, учитывающего совместную работу
сооружения и основания.

Нагрузки
на основание допускается определять
без учета их перераспределения
надфундаментной конструкцией при
расчетах:

4


оснований зданий и сооружений 3-го
класса;


общей устойчивости массива грунта
основания совместно сооружением;


средних значений деформаций основания;


деформаций основания в стадии привязки
типового проекта к ме- стным грунтовым
условиям.

В
зависимости от продолжительности
действия нагрузок различают постоянные
и временные (длительные, кратковременные,
особые) нагрузки.

К
постоянным нагрузкам относят массу
частей сооружения, массу и давление
грунтов. Постоянные нагрузки определяют
по проектным данным на основании
геометрических размеров и удельной
массы материалов, из которых они
изготовлены.

К
основным видам длительных нагрузок
следует относить: массу временных
перегородок, подливок и подбетонок под
оборудование; массу стационарного
оборудования; давление газов и жидкостей;
нагрузки на перекрытие от складируемых
материалов; нагрузки от людей, животных,
оборудования на перекрытие жилых;
общественных и сельскохозяйственных
зданий с пониженными нормативными
значениями; вертикальные нагрузки от
мостовых и подвесных кранов с пониженными
нормативными значениями; воздействия,
обусловленные деформациями основания,
не сопровождающимися коренным изменением
структуры грунта, а также оттаиванием
вечномерзлых грунтов; снеговые нагрузки
с пониженным расчетным значением,
определяемым умножением полного
расчетного значения на коэффициент
0.5, начиная с третьего снегового района
и др.

К
основным видам кратковременных нагрузок
следует относить: нагрузки от оборудования,
возникающие в пускоостановочном,
переходном и испытательном режимах,
массу людей, ремонтных материалов в
зонах обслуживания и ремонта оборудования;
нагрузки от людей, животных, оборудования
на перекрытия жилых, общественных и
сельскохозяйственных зданий с полным
нормативным значением; снеговые нагрузки
с полным расчетным значением; ветровые
нагрузки; гололедные нагрузки,

К
особым нагрузкам следует относить:
сейсмические воздействия; взрывные
воздействия; нагрузки, вызываемые резким
нарушением технологического процесса;
воздействия, обусловленные деформациями
основания, сопровождающиеся коренным
изменением структуры грунта.

При
расчетах оснований и фундаментов следует
учитывать нагрузки от складируемых
материалов и оборудования, размещаемых
вблизи фундаментов.

При
проектировании по предельным состояниям
экономичность и надежность, несущая
способность и нормальная эксплуатация
обеспечиваются расчетными коэффициентами,
которые позволяют раздельно учесть
особенности физико-механических свойств
грунтов оснований,

5

специфику
действующих нагрузок, ответственность
и особенности конструктивных схем
зданий и сооружений.

Коэффициент
надежности по нагрузке 
учитывает возможность случайного
отклонения (в сторону увеличения) внешних
нагрузок в реальных условиях от нагрузок,
принятых в проекте.

Расчеты
оснований и фундаментов производят на
расчетные нагрузки, определяемые
умножением нормативных их значений на
соответствующие коэффициенты надежности.

В
расчетах по деформациям – II группа
предельных состояний

(II
ГПС), коэффициент надежности по нагрузке

= 1.

При
расчетах по первой группе предельных
состояний (I ГПС) для постоянных нагрузок
значения 
принимаются по таблице 1; для временных
нагрузок в зависимости от вида нагрузки
– по СНиП 2.01.07-85. Для некоторых типов
временных нагрузок значения 
приведены в таблице 2

Т
а б л и ц а 1 – Коэффициенты надежности
по нагрузке

Конструкции
сооружений и вид грунтов

Коэффициент
надежности

по
нагрузке 

Конструкции:

Металлические

1.05

Бетонные
(со средней плотностью

свыше
1600 кг/м3),
железобетонные, каменные, армокаменные,
деревянные, бетонные (со средней
плотностью 1600 кг/м3
и
менее), изоляционные, выравнивающие
и отделочные слои (плиты, материалы в
рулонах, засыпки, стяжки и т.п.),
выполняемые:

в
заводских условиях;

на
строительной площадке

1.1

1.2

1.3

Грунты:

в
природном залегании

1.1

Насыпные

1.15

6

Т
а б л и ц а 2 – Коэффициенты надежности
по нагрузке

Вид
нагрузки

Коэффициент
надежности по нагрузке 

Временные
на плиты перекрытий менее

2.0
кПа

то
же 2.0 кПа и более

снеговые

ветровые

гололедные

1.3

1.2

1.4

1.4

1.3

Если необходим расчет в гигакалориях

В случае отсутствия счетчика тепловой энергии на открытом отопительном контуре расчет тепловой нагрузки на отопление здания рассчитывают по формуле Q = V * (Т1 — Т2 ) / 1000, где:

  • V – количество воды, потребляемой системой отопления, исчисляется тоннами или м 3 ,
  • Т1 – число, показывающее температуру горячей воды, измеряется в о С и для вычислений берется температура, соответствующая определенному давлению в системе. Показатель этот имеет свое название – энтальпия. Если практическим путем снять температурные показатели нет возможности, прибегают к усредненному показателю. Он находится в пределах 60-65 о С.
  • Т2 – температура холодной воды. Ее измерить в системе довольно трудно, поэтому разработаны постоянные показатели, зависящие от температурного режима на улице. К примеру, в одном из регионов, в холодное время года этот показатель принимается равным 5, летом – 15.
  • 1 000 – коэффициент для получения результата сразу в гигакалориях.

В случае закрытого контура тепловая нагрузка (гкал/час) рассчитывается иным образом:

  • α – коэффициент, призванный корректировать климатические условия. Берется в расчет, если уличная температура отличается от -30 о С;
  • V – объем строения по наружным замерам;
  • qо – удельный отопительный показатель строения при заданной tн.р = -30 о С, измеряется в ккал/м 3 *С;
  • tв – расчетная внутренняя температура в здании;
  • tн.р – расчетная уличная температура для составления проекта системы отопления;
  • Kн.р – коэффициент инфильтрации. Обусловлен соотношением тепловых потерь расчетного здания с инфильтрацией и теплопередачей через внешние конструктивные элементы при уличной температуре, которая задана в рамках составляемого проекта.

Расчет тепловой нагрузки получается несколько укрупненным, но именно эта формула дается в технической литературе.

Плиточный фундамент.

Плитный фундамент — это монолитная конструкция, залитая под всю площадь здания. Чтобы произвести расчет, нужны базовые данные, то есть площадь и толщина. Наша постройка имеет размеры 5 на 8 и его площадь будет 40 м 2 . Рекомендуемая минимальная толщина 10-15 сантиметров, значит заливая фундамент нам необходимо 400 м 3 бетона.

Высота основной плиты равняется высоте и ширине ребра жесткости. Значит если высота основной плиты 10 см, то глубина и ширина ребра жесткости также будет 10 см, из этого следует, что поперечное сечение 10 см ребра будет 0,1 м*0,1=0,01 метра, затем умножаем результат 0,01 м, на всю длину ребра 47 м, получаем объем 0,41 м 3 .

Плиточный тип фундамента. Количество арматуры и вязальной проволоки.

Количество арматуры зависит от грунта и веса здания. Допустим, ваша конструкция стоит на устойчивом грунте и имеет небольшой вес, тогда подойдет тонкая арматура, диаметром 1 сантиметр. Ну, а если конструкция дома тяжелая и стоит на неустойчивом грунте, то вам подойдет более толстая арматура от 14 мм. Шаг арматурного каркаса составляет как минимум 20 сантиметров.

К примеру, фундамент частной постройки имеет длину 8 метров и ширину 5 метров. При частоте шага в 30 сантиметров по длине необходимо 27 прутков, а по ширине 17. Необходимо 2 пояса, поэтому число прутков составляет (30+27)*2=114. Теперь это число умножим на длину одного прутка.

Затем сделаем соединение в местах верхней сетки арматуры с нижней сеткой, то же самое сделаем в месте пересечений продольных и поперечных прутков. Число соединений будет равно 27*17= 459.

При толщине плиты в 20 сантиметров и расстоянии каркаса от поверхности 5 см, значит для одного соединения нужен прут арматуры длиной 20см-10 см=10 см, и теперь общее число соединений равно 459* 0,1 м=45,9 метров арматуры.

По числу мест пересечений горизонтальных прутков, можно посчитать количество необходимой проволоки. Соединений на нижнем уровне будет 459 и столько же на верхнем, всего получится 918 соединений. Для связки одного такого места нужна проволока, которая согнута пополам, вся длина для одного соединения составляет 30 см, значит 918 м *0,3 м=275,4 метра.

Общая последовательность расчета

  • Определение веса здания, ветровых и снеговых давлений.
  • Оценка несущей способности почвы.
  • Вычисление массы основания.
  • Сравнение суммарной нагрузки от массы сооружения и его фундамента, воздействия снега и ветра с расчетным сопротивлением земли.
  • Корректировка размеров (при необходимости).

Как рассчитать максимальную нагрузку на фундамент дома

Массу строения рассчитывают по его площади (Sd). Для вычислений используется средний удельный вес кровли, стен и перекрытий в зависимости от применяемых материалов из справочных таблиц.

Удельный вес 1 м2 стен:

Бревно ø14-18см 100
Керамзитобетон толщиной 35 см 500
Полнотелый кирпич шириной 250 мм 500
То же 510 мм 1000
Опилкобетон толщиной 350 мм 400
Деревянный каркас 150 мм с утеплителем 50
Пустотелый кирпич шириной 380 мм 600
То же 510 мм 750

Как рассчитать максимальную нагрузку на фундамент дома

Удельный вес 1 м2 перекрытий:

Плиты железобетонные пустотные 350
Цокольное по деревянным балкам с утеплителем плотностью до 500 кг/м3 300
То же 200 кг/м3 150
Чердачное по деревянным балкам с утеплителем плотностью до 500 кг/м3 200
Железобетонное 500

Как рассчитать максимальную нагрузку на фундамент дома

Удельный вес 1 м2 кровли:

Листовая сталь 30
Шифер 50
Черепица 80

Массу здания вычисляют как сумму сомножителей площади сооружения на удельные веса кровли, стен и перекрытий. К полученному весу постройки необходимо добавить полезные нагрузки (мебель, люди), которые ориентировочно рекомендуют принимать для жилых помещений из расчета 100 кг массы на 1 м2.

Как рассчитать максимальную нагрузку на фундамент дома

2. Ветровая нагрузка на фундамент.

Находится по формуле:

W=W∙k, где W=24-120 кг/м2 — нормативное значение давления ветра (по таблицам в зависимости от региона России).

При определении величины коэффициента k учитывают тип местности:

  • А — ровные участки.
  • Б — имеются препятствия 10 м высотой.
  • С — районы городской застройки высотой >25 м.

Коэффициент изменения давления по высоте (k)

Высота дома, м А Б С
до 5 0,75 0,5 0,4
10 1,0 0,65 0,4
20 1,25 0,85 0,5

Для высотных зданий (башни, мачты) расчет выполняют с учетом пульсаций ветра.

3. Снеговое давление на фундамент.

Определяется как произведение площади кровли на коэффициент её уклона и на вес одного квадратного метра снежного покрова, величина которого зависит от региона.

Нормативная нагрузка от снегового покрова для России, кг/м2:

Юг 50
Север 190
Средняя полоса 100

Как рассчитать максимальную нагрузку на фундамент дома

Коэффициент влияния наклона крыши:

0-20° 1,0
20-30° 0,8
30-40° 0,6
40-50° 0,4
50-60° 0,2

Чтобы определить, какая нагрузка приходится на фундамент, надо просуммировать статические и временные воздействия и умножить полученный результат на коэффициент запаса (1,5). Подобные расчеты легко выполняются с помощью калькуляторов, содержащих базы необходимых данных.

4. Несущая способность грунта.

При разработке проекта обязательной процедурой является проведение геологических изысканий в месте строительства. По итогам этих работ определяют тип почвы, а по ней и несущую способность пласта на глубине заложения основания. Последняя зависит ещё от уровней промерзания (df) и залегания грунтовых вод (dw).

Заглубление в землю подошвы:

Коэффициент надежности по нагрузке

Второй коэффициент, на который мы должны умножать все нормативные (характеристические) значения нагрузок, чтобы получить расчетные значения – это коэффициент надежности по нагрузке γf. Суть этого коэффициента в том, что мы никогда не сможем точно определить нагрузку в конкретной ситуации – и плотность материала может варьироваться, и толщина слоев, и временные нагрузки могут выходить за определенные им среднестатистические пределы – в общем, коэффициент γf по сути является коэффициентом запаса, который увеличивает или уменьшает нагрузку в зависимости от ситуации. И самое главное для нас – определиться правильно с расчетной ситуацией, чтобы правильно выбрать γf.

Для того, чтобы разобраться с тем, какое значение коэффициента γf следует выбирать в разных случаях, нужно усвоить для себя понятия предельного, эксплуатационного, квазипостоянного и циклического значения нагрузок. Чтобы вам не показалось, что я хочу вас запутать окончательно (с этим прекрасно справляется и сам ДБН «Нагрузки и воздействия», дополнительных усилий прилагать не нужно), я сразу сильно упрощу разбор этих понятий. Два последних мы отбрасываем, как встречающиеся крайне редко (в расчетах на выносливость, ползучесть и т.п.), а по поводу двух первых запомним:

— предельное значение всегда используется при расчете по первому предельному состоянию (о предельных состояниях подробно здесь);

— эксплуатационное значение всегда используется при расчете по второму предельному состоянию.

Для предельного значения к коэффициенту надежности по нагрузке добавляется буква «m» – γfm, а для эксплуатационного – буква «е» – γfе. Значение предельного значения, как правило, выше значения эксплуатационного, таким образом, в расчете конструкций по первому предельному состоянию (по прочности и устойчивости) расчетное значение нагрузок будет большим, чем в расчете по второму предельному состоянию (по деформативности и трещиностойкости).

Все значения коэффициентов можно выбрать из ДБН «Нагрузки и воздействия», начиная с п. 5.1 и до конца документа.

Пример 1. Определение коэффициентов надежности по нагрузке.

Допустим, у нас есть нагрузка от веса плиты перекрытия 300 кг/м2 и временная нагрузка от веса людей в квартире. Нам нужно определить предельное и эксплуатационное значение этих нагрузок для устоявшегося состояния. Коэффициент надежности по ответственности γn определяется для класса СС2 и категории В (см. пункт 1 данной статьи).

1) Нагрузка от веса плиты относится к весу конструкций, коэффициенты к ней находим из раздела 5 ДБН «Нагрузки и воздействия». Из таблицы 5.1 находим γfm = 1,1; γfе = 1,0.

Коэффициент надежности по ответственности для расчета по первому предельному состоянию равен 1,0; для расчета по второму предельному состоянию – 0,975 (см. таблицу 5 в пункте 1 данной статьи).

Таким образом при расчете по первому предельному состоянию расчетная нагрузка от веса плиты будет равна 1,1∙1,0∙300 = 330 кг/м2, а при расчете по второму предельному состоянию – 1,0∙0,975∙300 = 293 кг/м2.

2) Временная нагрузка от веса людей относится к разделу 6 ДБН, из таблицы 6,2 мы находим нормативное (характеристическое) значение нагрузки 150 кг/м2. Из п. 6.7 находим коэффициент надежности по нагрузке для предельного значения γfm = 1,3 (для значения нагрузок менее 200 кг/м2). Коэффициент надежности по нагрузке для эксплуатационного значения я в разделе 6 не нашла для равномерно распределенных нагрузок, но позволяю себе его по старой памяти принять γfе = 1,0.

Коэффициент надежности по ответственности для расчета по первому предельному состоянию равен 1,0; для расчета по второму предельному состоянию – 0,975 (см. таблицу 5 в пункте 1 данной статьи).

Таким образом при расчете по первому предельному состоянию расчетная временная нагрузка будет равна 1,3∙1,0∙150 = 195 кг/м2, а при расчете по второму предельному состоянию – 1,0∙0,975∙150 = 146 кг/м2.

Из примера 1 мы видим, что значения нагрузок в разных частях расчета будут значительно отличаться.

Рекомендую при подсчете временных нагрузок для многоэтажных зданий не забывать об уменьшающих коэффициентах из пункта 6.8 ДБН «Нагрузки и воздействия», они не допускают перерасхода и приводят расчетную модель к максимально правдоподобной. Правда, при расчете в программных комплексах нужно неслабо извернуться, чтобы учесть уменьшенную нагрузку только для фундаментов, колонн и балок, при этом для перекрытий данное уменьшение не действует.

Как самостоятельно рассчитать нагрузку на фундамент

Целью расчета является выбор типа фундамента и его размеров. Задачи, решаемые для этого, заключаются в: оценке нагрузок от конструкции будущего сооружения, действующие на единицу площади грунта; сравнении полученных результатов с несущими способностями пласта на глубине заложения.

Как рассчитать максимальную нагрузку на фундамент дома

  • Регион (климатические условия, сейсмоопасность).
  • Сведения о типе почвы, уровне подземных вод на площадке застройки (предпочтительно такую информацию получить по результатам геологических изысканий, но при предварительной оценке можно воспользоваться данными по соседним участкам).
  • Предполагаемая планировка будущего здания, количество этажей, тип кровли.
  • Какие стройматериалы будут использованы для сооружения.

Окончательный расчет фундамента может быть выполнен только после проектирования и желательно, если это сделает специализированная организация. Однако предварительную оценку возможно провести самостоятельно с целью определения подходящего места, количества требуемых материалов и объёма работ. Это позволит повысить долговечность (не допустить деформаций основания и конструкций здания) и уменьшить расходы. Достаточно просто и удобно задача решается с применением онлайн-калькуляторов, получивших распространение в последнее время.

Как рассчитать максимальную нагрузку на фундамент дома

К первым относят общий вес самого строения. Он складывается из массы стен, основы, кровли, перекрытий, утеплителя, окон и дверей, мебели, бытовой техники, канализации, отопления, водопровода, отделки, жильцов. Второй вид носит временный характер. Это выпавший снег, сильный ветер, сейсмические воздействия.

Нагрузка стен

Для определения нагрузки от стен необходимо высчитать такие параметры, как количество этажей, их высота, размеры в плане. То есть нужно знать длину, высоту и ширину всех стен в доме и путем перемножения этих данных определить общий объем стен, имеющихся в здании. Далее объем здания умножают на удельный вес материала, используемого в качестве стен, согласно приведенной ниже таблице, и получают вес всех стен здания. Затем вес здания делят на площадь опоры стен на фундамент.
Перечисленные действия можно записать в следующем порядке:
Определяем площадь стен S=AxB, где S- площадь, A — ширина, В — высота.
Определяем объем стен V=SxT, где V-объем,S-площадь, T- толщина стен.
Определяем вес стен Q=Vxg, где Q-вес, V-объем, g — удельный вес материала стены. Определяем удельную нагрузку,с которой стены здания давят на фундамент ( кг/м2) q=Q/s, где s-площадь опирания несущих конструкций на фундамент.

Постоянные, длительные и кратковременные нагрузки

Третье, с чем следует разобраться для определения расчетного сочетания нагрузок – это понятие постоянных, длительных и кратковременных нагрузок. Дело в том, что для каждого вида этих нагрузок при определении сочетаний используются различные коэффициенты. Поэтому после определения всех действующих на здание нагрузок следует обратиться к пунктам 4.11 – 4.13 ДБН «Нагрузки и воздействия» и сделать выбор, к какому типу относится каждая нагрузка.

Здесь хочу обратить ваше внимание на п. 4.12 (з) и 4.13 (б), а также на п

4.12 (к) и 4.13 (в).

Как рассчитать максимальную нагрузку на фундамент дома

Как могут нагрузки от людей и снеговые нагрузки одновременно относиться и к длительным, и к кратковременным? Если внести их в расчет и там, и там, то явно будет перебор. И правильно, нужно сделать выбор в пользу одного из двух вариантов: если вы считаете конструкцию на ползучесть (к примеру) и в расчете используете нормативное значение нагрузки с пониженным значением (то бишь, квазипостоянное), тогда такую временную нагрузку следует отнести к длительным; если же вы делаете обычный расчет с использованием предельных и эксплуатационных значений нагрузок, то ваши временные нагрузки в таком случае относятся к кратковременным.

Таким образом, в большинстве случаев нагрузки от людей и снега относятся к кратковременным.

Пример 2. Определение типа нагрузок в расчете.

В таблице записаны нагрузки, собранные для расчета здания. В правой колонке необходимо указать тип нагрузки согласно п. 4.11 – 4.13 ДБН «Нагрузки и воздействия».

Нагрузка от веса конструкций (перекрытия, стены, фундаменты)

4.11а

постоянная

Нагрузка от веса межкомнатных кирпичных  перегородок в жилом доме

4.11а

постоянная (хоть перегородки и считают временными, но по факту их в квартире не сносят)

Нагрузка от гипсокартонных перегородок в квартире-студии

4.12а

длительная (у этих перегородок много шансов сменить местоположение)

Снеговая нагрузка

4.13д

кратковременная (см. пояснения над таблицей)

Временная нагрузка от веса людей

4.13в

кратковременная (см. пояснения над таблицей)

Нагрузка от веса полов в квартире

4.11а

постоянная (точного пункта в ДБН нет, но полы в квартире будут всегда)

Нагрузка от веса грунта на обрезах фундамента

4.11б

постоянная

Калькулятор расчета необходимой мощности котла

Для определения примерной мощности можно знать простое соотношение: чтобы отопить 10 м2 нужно 1 кВт мощности.

Например, площадь дома 300 м2, значит, вам необходимо приобрести котел мощностью не менее 30 кВт.

Чтобы сделать расчет мощности котла отопления для конкретного дома, нужно ввести в калькулятор определенные параметры, предварительно измерив помещение: указать желаемую температуру в комнате, среднюю температуру воздуха на улице в зимний период, габариты помещения (длина, высота) в метрах, размеры окон и дверей, указать наличие вентиляции, тип перекрытий и т.д.

Затем необходимо нажать кнопку «Рассчитать». Калькулятор быстро посчитает, котел какой мощности нужен для отопления дома.

Наш онлайн калькулятор для расчета мощности котла предусматривает эксплуатационный резерв прибора, с учетом специфических особенностей помещения. Суммирование всех введенных в таблицу параметров приводит к общему значению требуемой мощности, которой должен соответствовать котел.