Определение тепловых потерь, или что же такое, тепловизорное обследование дома

1. УРАВНЕНИЯ ПРЯМОГО И ОБРАТНОГО ТЕПЛОВОГО БАЛАНСА

Наиболее полное представление об экономических показателях работы судового котла дает тепловой баланс, который показывает, сколько теплоты поступает в котел, какая часть ее используется полезно (на производство пара), а какая теряется.

Тепловой баланс — это приложение закона сохранения энергии к анализу рабочего процесса котла. При анализе рабочего процесса котла на стационарном (или установившемся) режиме его работы тепловой баланс составляется на основании результатов теплотехнических испытаний. В

общем виде уравнение теплового баланса имеет вид

i=n

QПОД = Q1 + ∑QПОТ ,i

(4,1)

i=2

где QПОД – количество теплоты, подведенной к паровому котлу, кДж/кг; Q1 – полезно использованная теплота, кДж/кг;

QПОТ – тепловые потери, кДж/кг

В нормативном методе расчета, разработанном для стационарных котлоагрегатов, рекомендуется учитывать всю теплоту, подводимую в топку с 1 кг топлива (рис. 4.1), т. е.

Q

ПОД

= Q

P

= QP +Q +Q

B

+Q

ПР

(4,2)

H T

где QHP — низшая теплота сгорания рабочей массы топлива, кДж/кг;

QT, QB, QПР – количество теплоты, вносимое соответственно с топливом, воздухом и паром, который подводится для распыления топлива, кЛж/кг.

Последние три величины определяют следующим образом. Физическая теплота топлива

QT

= cT tT

(4,3)

где сТ – теплоемкость топлива при температуре его подогрева tT, кДж/(кг·К)

Величина QВ учитывает лишь ту теплоту, которая получена воздухом вне котла, например в паровом воздухоподогревателе. При обычной компоновке котла с газовым подогревом воздуха она равна количеству теплоты, вносимой в топку с холодным воздухом, т. е.

QB = QXB =αV ocXBtXB =αI ХВ

(4,4)

где α – коэффициент избытка воздуха;

сХВ – теплоемкость холодного воздуха при температуре tXB;

I XB- энтальпия теоретического количества воздуха V, кДж/кг

Количество теплоты, подводимой в топку с паром для распыления мазутов,

QПР =

GПР

(iПР −i»)

(4,5)

BK

где GПР – расход пара на распыление ВК топлива, кг/ч;

iПР, i” – энтальпия пара на распыление топлива и сухого насыщенного пара в уходящих газах, кДж/кг.

Величина i” в уравнении (4.5) может приниматься равной 2500 кДж/кг, что соответствует парциальному давлению паров воды в уходящих газах pH2O 0,01МПа.

Для судовых котлов определяющей величиной в уравнении (4.2) является QHP , так как сумма остальных слагаемых не превышает 1 % от QP. В связи с этим при составлении теплового баланса судовых котлов обычно принимают при подогреве воздуха дымовыми газами QПОД = QHP , а при

подогреве паром QПОД = QHP +QB . При этом основным является первое уравнение, так как паровой

Типы тепловых трат

Для каждого участка характерен свой тип тепловых трат. Рассмотрим каждый из них подробнее.

Котельная

В ней установлен котел, который преобразует топливо и передает тепловую энергию теплоносителю. Любой агрегат теряет часть вырабатываемой энергии по причине недостаточного сгорания топлива, выхода тепла через стенки котла, проблем с продувкой. В среднем, используемые на сегодняшний день котлы имеют КПД 70-75%, тогда как более новые котлы будут обеспечивать коэффициент 85% и процент потерь у них существенно ниже.Определение тепловых потерь, или что же такое, тепловизорное обследование дома

Дополнительное влияние на растраты энергии оказывают:

  1. отсутствие своевременной наладки режимов котла (потери возрастают на 5-10%);
  2. несоответствие диаметра сопел горелок нагрузке теплового агрегата: снижается теплоотдача, топливо сгорает не до конца, потери увеличиваются в среднем на 5%;
  3. недостаточно частая чистка стенок котла — появляется накипь и отложения, эффективность работы уменьшается на 5%;
  4. отсутствие контролирующих и регулировочных средств — измерителей пара, счетчиков электроэнергии, датчиков тепловой нагрузки, — или их неверная настройка уменьшают коэффициент полезности на 3-5%;
  5. трещины и повреждения стенок котла снижают КПД на 5-10%;
  6. использование устаревшего насосного оборудования уменьшает затраты котельной по ремонту и обслуживанию.

Потери в трубопроводах

Эффективность работы теплотрассы определяют следующие показатели:

  1. КПД насосов, с помощью которых теплоноситель двигается по трубам;
  2. качество и способ укладки теплопровода;
  3. правильные настройки тепловой сети, от которых зависит распределение тепла;
  4. протяженность трубопровода.

При грамотном проектировании тепловой трассы нормативные потери тепловой энергии в тепловых сетях составят не более 7%, даже если потребитель энергии будет располагаться от места производства топлива на расстоянии 2 км. Фактически на сегодняшний день на данном участке сети теплопотери могут достигать 30 и более процентов.

Потери объектов потребления

Определить лишние траты энергии в отапливаемом помещении можно при наличии прибора учета или счетчика.

Причинами такого рода потерь могут быть:

  1. неравномерное распределение отопления по помещению;
  2. уровень обогрева не соответствует погодным условиям и времени года;
  3. отсутствие рециркуляции горячего водоснабжения;
  4. отсутствие датчиков контроля температуры на бойлерах горячей воды;
  5. загрязнение труб или наличие внутренних утечек.

Расчет теплового баланса котла. Определение расхода топлива

Тепловой баланс котла

Составление теплового баланса котла заключается в установлении равенства между поступившим в котел количеством тепла, называемого располагаемым теплом QP, и суммой полезно использованного тепла Q1 и тепловых потерь Q2, Q3, Q4. На основании теплового баланса вычисляют КПД и необходимый расход топлива.

Тепловой баланс составляется применительно к установившемуся тепловому состоянию котла на 1 кг (1 м3) топлива при температуре 0°С и давлении 101,3 кПа.

Общее уравнение теплового баланса имеет вид:

QP + Qв.вн = Q1 + Q2 + Q3 + Q4 + Q5 + Q6, кДж/м3, (2.4.1-1)

где QP — располагаемое тепло топлива; Qв.вн — тепло, внесенное в топку воздухом при его подогреве вне котла; Qф — тепло, внесенное в топку паровым дутьем («форсуночным» паром); Q1 — полезно использованное тепло; Q2 — потеря тепла с уходящими газами; Q3 — потеря тепла от химической неполноты сгорания топлива;- потеря тепла от механической неполноты сгорания топлива; Q5 — потеря тепла от наружного охлаждения; Q6 — потеря с теплом шлака.

При сжигании газообразного топлива в отсутствие внешнего подогрева воздуха и парового дутья величины Qв.вн, Qф, Q4, Q6 равны 0, поэтому уравнение теплового баланса будет выглядеть так:

QP = Q1 + Q2 + Q3 + Q5, кДж/м3. (2.4.1-2)

Располагаемое тепло 1 м3 газообразного топлива:

QP = Qdi + iтл, кДж/м3, (2.4.1-3)

где Qdi — низшая теплота сгорания газообразного топлива, кДж/м3 (см. табл. 1); iтл — физическое тепло топлива, кДж/м3. Учитывается в том случае, когда топливо подогревается посторонним источником тепла. В нашем случае этого не происходит, поэтому QP = Qdi, кДж/м3, (2.4.1-4)

QP = 36 800 кДж/м3. (2.4.1-5)

Тепловые потери и КПД котла

Потери тепла обычно выражаются в % от располагаемого тепла топлива:

и т.д. (2.4.2-1)

Потеря тепла с уходящими газами в атмосферу определяется как разность энтальпий продуктов сгорания на выходе из последней поверхности нагрева (экономайзера) и холодного воздуха:

, (2.4.2-2)

где Iух = IН ЭК — энтальпия уходящих газов. Определяется интерполяцией по данным таблицы 7 по заданной температуре уходящих газов tух°С:

, кДж/м3. (2.4.2-3)

бух = бНЭК — коэффициент избытка воздуха за экономайзером (см. табл.3);

I0.х.в. — энтальпия холодного воздуха,

I0.х.в = (ct)в*VH = 39,8*VH,кДж/м3, (2.4.2-4)

где (ct)в = 39,8 кДж/м3 — энтальпия 1 м3 холодного воздуха при tх.в. = 30°С; VH — теоретический объем воздуха, м3/м3 (см. табл. 4) = 9,74 м3/м3.

I0.х.в = (ct)в*VH = 39,8*9,74 = 387,652 кДж/м3, (2.4.2-5)

По таблице параметров паровых котлов tух = 162°С,

,(2.4.2-6)

(2.4.2-7)

Потеря тепла от химической неполноты сгорания q3 , %, обусловлена суммарной теплотой сгорания продуктов неполного горения, остающихся в дымовых газах (СО, Н2, СН4 и др.). Для проектируемого котла принимаем

q3 = 0,5%.

Потеря тепла от наружного охлаждения q5 , %, принимается по таблице 8 в зависимости от паропроизводительности котла D, кг/с,

кг/с, (2.4.2-8)

где D, т/ч — из исходных данных = 6,73 т/ч.

Таблица 8 — Потери теплоты от наружного охлаждения парового котла с хвостовыми поверхностями

Номинальная паропроизводительность котла

D, кг/с (т/ч)

Потеря теплоты q5 , %

1,67 (6)

2,4

2,78 (10)

1,7

4,16 (15)

1,5

5,55 (20)

1,3

6,94 (25)

1,25

Находим приблизительное значение q5 , %, для номинальной паропроизводительности 6,73 т/ч.

(2.4.2-9)

Суммарная потеря теплоты в котле:

Уq = q2 + q3 + q5 = 4,62 + 0,5 + 1,93 = 7,05 % (2.4.2-10)

Коэффициент полезного действия котла (брутто):

зК = 100 — Уq = 100 — 7,05 = 92,95 %. (2.4.2-11)

Меры по сокращению потерь теплоты с поверхности трубопроводов

Энергосбережение при транспортировке тепловой энергии в первую очередь зависит от качества тепловой изоляции. Главными энергосберегающими мероприятиями, уменьшающими потери теплоты с поверхности трубопроводов, являются:

изоляция неизолированных участков и восстановление целостности существующей теплоизоляции;

восстановление целостности существующей гидроизоляции;

нанесение покрытий, состоящих из новых теплоизоляционных материалов, либо использование трубопроводов с новыми типами теплоизоляционных покрытий;

изоляция фланцев и запорной арматуры.

Изоляция неизолированных участков является первоочередным энергосберегающим мероприятием, поскольку тепловые потери с поверхности неизолированных трубопроводов очень велики по сравнению с потерями с поверхности изолированных трубопроводов, а стоимость работ по нанесению теплоизоляции относительно невелика.

Новые виды теплоизоляционных покрытий должны иметь не только низкую теплопроводность, но и малую воздухо- и водопроницаемость, а также низкую электропроводность, что уменьшает электрохимическую коррозию материала труб.

При нарушении целостности слоя гидроизоляционных покрытий происходит увеличение влажности теплоизоляции. Поскольку теплопроводность воды в диапазоне температур работы тепловой сети X = 0,6 -ь 0,7 Вт/(м • К), а теплопроводность теплоизоляционных материалов обычно составляет А,из = 0,035 -4-0,05 Вт/(м • К), то увлажнение материала может увеличить его теплопроводность в несколько раз (на практике более чем в 3 раза).

Увлажнение теплоизоляции способствует разрушению труб из-за коррозии их внешней поверхности, в результате чего срок службы трубопроводов сокращается в несколько раз. Поэтому на металлическую поверхность трубы наносится антикоррозионное покрытие, например, в виде силикатных эмалей, изола и др.

В настоящее время широко внедряются теплопроводы типа «труба в трубе» с пенополиуретановой изоляцией в гидрозащитной оболочке с дистанционным контролем целостности изоляции. Такая конструкция предусматривает предварительную изоляцию пенополиуретаном и заключение в полиэтилен не только труб, но и всех компонентов системы (шаровой арматуры, температурных компенсаторов и др.). Теплопроводы этой конструкции прокладываются под землей бесканально и обеспечивают существенное энергосбережение за счет предварительного изготовления отдельных изолированных элементов в заводских условиях и высокой тепло- и влаго- непроницаемости. Для успешной эксплуатации предварительно изолированных трубопроводов необходимо высокое качество их монтажа. При этом они могут функционировать без замены до 30 лет.

Профилактическими мерами, позволяющими сокращать потери теплоты с поверхности трубопроводов, являются: предотвращение затопления трубопроводов в результате установки дренажей (при их отсутствии) и содержания их в должном порядке; вентиляция проходных и непроходных каналов для предупреждения попадания конденсата на поверхность теплоизоляции.

В качестве еще одной меры, снижающей потери теплоты с поверхности трубопроводов, служит переход системы теплоснабжения на пониженный температурный график (с 150/70 на 115/70 или 95/70 °С/°С), что приводит к снижению разности температур теплоносителя в подающем трубопроводе и окружающей среды. Однако э го потребует большего расхода теплоносителя через систему, чтобы передать потребителю требуемое количество теплоты. Для этого нужно увеличить затраты электроэнергии на привод насосов. Поэтому для определения целесообразности проведения рассматриваемого мероприятия необходим технико-экономический расчет.

Тепловой расчет топочной камеры

Используя конструктивные данные котла, составим расчетную схему топки.

Рис. 2.1 — Схема топочной камеры

Расчет топки представим в таблице 2.3.

Таблица 2.3

Рассчитываемая величина

Обозна-чение

Размер-ность

Формула или обоснование

Расчет

Диаметр и толщина экранных труб

dx

мм

По чертежу

32х6

Шаг труб

S1

мм

То же

46

Поверхности:

фронтовой стены

м2

По рис. 2.1

33,3.16,32=543,5

задней стены

То же

боковой стены

пода

Fпод

8,47.16,32=138,2

потолка

Fп

3,2.16,32=52,2

выходного окна

Fвых

(9+2,8+1,34).16,32=214,4

Суммарная поверхность стен топочной камеры

Fст

Fф+Fз+2Fб+Fпод+Fп+

+Fвых

543,5+442,9+2.233,5+138,2+52,2+214,4=1860

Объем топочной камеры

м3

По рис. 2.1

233,5.16,32=3811

Эффективная толщина излучающего слоя

s

м

Тепловое напряжение топочного объема

кВт/м3

Коэффициент избытка воздуха в топке

т

Принят ранее

1,05

Температура горячего воздуха

tг.в.

С

Задана

333

Энтальпия горячего воздуха

кДж/м3

По табл. 2.2

4271,6

Тепло, вносимое воздухом в топку

кДж/м3

Полезное тепловыделение в топке

кДж/м3

Теоретическая температура горения

а

С

По табл. 2.2

2145С

Абсолютная теоретическая температура горения

Та

К

а+273

2418

Высота расположения горелок

м

По рис. 2.1

Высота топки (до середины выходного газового окна)

Нт

м

То же

Смещение максимума температур выше зоны горелок

х

При использовании вихревых горелок в несколько ярусов и D>110кг/с

0,05

Относительное положение максимума температур по высоте топки

хт

Коэффициент

М

Температура газов на выходе из топки

С

Принимаем предварительно

1350

Абсолютная температура газов на выходе из топки

К

1623

Энтальпия газа

кДж/м3

По табл. 2.2

23993

Средняя суммарная теплоемкость продуктов сгорания

Vcср

кДж/(м3.К)

Давление в топке

р

МПа

принимаем

0,1

Коэффициент ослабления лучей трехатомными газами

Коэффициент теплового излучения несветящихся газов

г

Соотношение между содержанием углерода и водорода в топливе

Коэффициент ослабления лучей сажистыми частицами

Коэффициент ослабления лучей светящимся факелом

k

Коэффициент теплового излучения светящейся части факела

с

Коэффициент, характеризующий долю топочного объема, заполненную светящейся частью факела

m

При сжигании газа и

0,1

Коэффициент теплового излучения факела

ф

Угловой коэффициент экрана

х

Для плавниковых экранов

1

Условный коэффициент загрязнения поверхности

При сжигании газа и настенных мембранных экранах

0,65

Коэффициент тепловой эффективности экрана

эк

0,65

Температурный коэффициент

А

Для природного газа

700

Поправочный коэффициент на взаимный теплообмен газовых объемов верхней части топки и ширм

Условный коэффициент загрязнения поверхности входа в ширмы

вых

0,65.0,52=0,338

Коэффициент тепловой эффективности выходной поверхности

вых

вых.х

0,338

Средний коэффициент тепловой эффективности

ср

Коэффициент теплового излучения топки

т

Значение для формулы расчетной температуры газов на выходе из топки

R

Расчетная температура газов на выходе из топки

С

Отличается от ранее принятой менее, чем на 100С, следовательно второе приближение делать не нужно

Энтальпия газа

кДж/м3

По табл. 2.2

24590

Количество тепла, воспринятое в топке

кДж/м3

Поверхность стен топки, занятая горелками

Fгор

м2

Из чертежа

14

Лучевоспринимающая поверхность нагрева экранов топки

Нл

м2

Средняя тепловая на-грузка поверхности нагрева топочных экранов

кВт/ м2

Классификация систем теплоснабжения

Существует классификация систем теплоснабжения по различным признакам:

  1. По мощности — различаются по дальности транспортировки тепла и количеству потребителей. Местные системы теплоснабжения находятся в одном или соседних помещениях. Нагрев и передача тепла воздуху объединены в одно устройство и располагаются в печи. В централизованных системах один источник обеспечивает обогрев нескольких помещений.
  2. По источнику тепла. Выделяют районное теплоснабжение и теплофикацию. В первом случае источником отопления является котельная, а при теплофикации тепло обеспечивает ТЭЦ.
  3. По виду теплоносителя выделяют водяные и паровые системы.

Теплоноситель, нагреваясь в котельной или ТЭЦ, переносит теплоту к приборам отопления и водоснабжения в зданиях и жилых домах.Определение тепловых потерь, или что же такое, тепловизорное обследование дома Водяные тепловые системы бывают одно- и двухтрубными, реже — многотрубными. В многоквартирных домах наиболее часто применяют двухтрубную систему, когда по одной трубе горячая вода поступает в помещения, а по другой трубе, отдав температуру, возвращается к ТЭЦ или котельной. Подразделяют открытые и закрытые водяные системы. При открытом типе теплоснабжения горячую воду потребители получают из подающей сети. Если вода используется в полном объеме, применяют однотрубную систему. При закрытом водоснабжении теплоноситель возвращается к источнику тепла.

Системы централизованного теплоснабжения должны соответствовать следующим требованиям:

  • санитарно-гигиеническим — теплоноситель не оказывает неблагоприятного воздействия на условия помещений, обеспечивая среднюю температуру приборов нагрева в районе 70-80 градусов;
  • технико-экономическим — пропорциональное соотношение цены трубопровода к расходу топлива для обогрева;
  • эксплуатационным — наличие постоянного доступа для обеспечения регулировки уровня тепла в зависимости от температуры окружающей среды и времени года.

Прокладывают теплосети над и под землей, учитывая особенности местности, технические условия, температурные режимы эксплуатации, бюджет проекта.

Выбирая территорию для прокладки теплопровода, нужно учитывать безопасность, а также предусмотреть возможность быстрого доступа к сети в случае аварии или ремонта. С целью обеспечения надежности, сети теплоснабжения не прокладывают в общих каналах с газопроводами, трубами, проводящими кислород или сжатый воздух, в которых давление превышает 1,6 МПа.Определение тепловых потерь, или что же такое, тепловизорное обследование дома

1 Исходные данные

2.1.1 Источником
теплоснабжения является ТЭЦ в составе АО-энерго, входящего в РАО «ЕЭС России».

На балансе
АО-энерго находятся магистральные и часть распределительных водяных ТС,
основная часть распределительных и квартальные сети эксплуатируются
муниципальным предприятием; ТС на промпредприятия, составляющие незначительную
долю всех ТС, находятся на балансе промпредприятий.

Присоединенная
тепловая нагрузка по договорам составляет 1258 Гкал/ч; в том числе
коммунально-бытовая 1093 и промышленная 165 Ткал/ч; отопительно-вентиляционная
тепловая нагрузка составляет 955 Гкал/ч, максимальная нагрузка на горячее
водоснабжение (по закрытой схеме) — 303 Гкал/ч; отопительно-вентиляционная
нагрузка коммунально-бытового сектора — 790 Гкал/ч, в том числе отопительная —
650 и вентиляционная — 140 Гкал/ч.

Утвержденный
АО-энерго температурный график отпуска тепла (рисунок настоящих Рекомендаций) — повышенный, расчетными
температурами воды 150/70 °С при расчетной температуре наружного воздуха tн.р = -30 °С, со срезкой 135 °С, спрямлением для горячего
водоснабжения (ГВС) 75 °С.

2.1.2 Тепловая
сеть двухтрубная тупиковая; ТС выполнены в основном подземной канальной и
надземной на низких опорах прокладкой, другие виды прокладки (бесканальная, в
проходных каналах и т.п.) занимают незначительный объем (по материальной
характеристике). Тепловая изоляция выполнена из минераловатных изделий.

Продолжительность
отопительного периода 5808 ч, летнего — 2448, ремонтного — 504 ч.

2.1.3
Материальная характеристика ТС на балансе АО-энерго по участкам представлена в
таблице настоящих
Рекомендаций.

2.1.4
Среднемесячные и среднегодовые значения температуры наружного воздуха и грунта
(на средней глубине залегания трубопроводов) по данным местной
метеорологической станции или климатических справочников, усредненным за
последние 5 лет, приведены в таблице
настоящих Рекомендаций.

2.1.5
Среднемесячные значения температуры сетевой воды в подающем и обратном
трубопроводах по утвержденному температурному графику отпуска тепла при
среднемесячных значениях температуры наружного воздуха и среднегодовые значения
температуры сетевой воды приведены в таблице настоящих Рекомендаций.

2.1.6 Результаты
испытаний по определению тепловых потерь в виде поправочных коэффициентов к
удельным тепловым потерям по нормам проектирования составляют: в среднем по
надземной прокладке — 0,91; по подземной — 0,87. Испытания проводились в 1997
г. в соответствии с РД
34.09.255-97 [].

Испытаниям
подвергались участки магистрали № 1 ТЭЦ ÷ ТК-1 и TK-1 ÷ TK-2 надземной прокладки с наружными
диаметрами 920 и 720 мм протяженностью соответственно 1092 и 671 м и участки
магистрали № 2 TK-1 ÷ TK-4 и ТК-4 ÷ ТК-6 подземной
канальной прокладки с наружными диаметрами 920 и 720 мм протяженностью
соответственно 88 и 4108 м. Материальная характеристика испытанных сетей
составляет 38 % всей материальной характеристики ТС на балансе АО-энерго.

2.1.7 Ожидаемый
(планируемый) отпуск тепловой энергии, определяемый планово-экономическими
службами энергоснабжающей организации по месяцам и за год, приведен в таблице настоящих Рекомендаций (без учета
количества тепла на промпредприятия).