1. УРАВНЕНИЯ ПРЯМОГО И ОБРАТНОГО ТЕПЛОВОГО БАЛАНСА
Наиболее полное представление об экономических показателях работы судового котла дает тепловой баланс, который показывает, сколько теплоты поступает в котел, какая часть ее используется полезно (на производство пара), а какая теряется.
Тепловой баланс — это приложение закона сохранения энергии к анализу рабочего процесса котла. При анализе рабочего процесса котла на стационарном (или установившемся) режиме его работы тепловой баланс составляется на основании результатов теплотехнических испытаний. В
общем виде уравнение теплового баланса имеет вид |
|
i=n |
|
QПОД = Q1 + ∑QПОТ ,i |
(4,1) |
i=2 |
где QПОД – количество теплоты, подведенной к паровому котлу, кДж/кг; Q1 – полезно использованная теплота, кДж/кг;
QПОТ – тепловые потери, кДж/кг
В нормативном методе расчета, разработанном для стационарных котлоагрегатов, рекомендуется учитывать всю теплоту, подводимую в топку с 1 кг топлива (рис. 4.1), т. е.
Q |
ПОД |
= Q |
P |
= QP +Q +Q |
B |
+Q |
ПР |
(4,2) |
H T |
где QHP — низшая теплота сгорания рабочей массы топлива, кДж/кг;
QT, QB, QПР – количество теплоты, вносимое соответственно с топливом, воздухом и паром, который подводится для распыления топлива, кЛж/кг.
Последние три величины определяют следующим образом. Физическая теплота топлива
QT |
= cT tT |
(4,3) |
где сТ – теплоемкость топлива при температуре его подогрева tT, кДж/(кг·К)
Величина QВ учитывает лишь ту теплоту, которая получена воздухом вне котла, например в паровом воздухоподогревателе. При обычной компоновке котла с газовым подогревом воздуха она равна количеству теплоты, вносимой в топку с холодным воздухом, т. е.
QB = QXB =αV ocXBtXB =αI ХВ |
(4,4) |
||
где α – коэффициент избытка воздуха; |
|||
сХВ – теплоемкость холодного воздуха при температуре tXB; |
|||
I XB- энтальпия теоретического количества воздуха V, кДж/кг |
|||
Количество теплоты, подводимой в топку с паром для распыления мазутов, |
|||
QПР = |
GПР |
(iПР −i») |
(4,5) |
BK |
где GПР – расход пара на распыление ВК топлива, кг/ч;
iПР, i” – энтальпия пара на распыление топлива и сухого насыщенного пара в уходящих газах, кДж/кг.
Величина i” в уравнении (4.5) может приниматься равной 2500 кДж/кг, что соответствует парциальному давлению паров воды в уходящих газах pH2O 0,01МПа.
Для судовых котлов определяющей величиной в уравнении (4.2) является QHP , так как сумма остальных слагаемых не превышает 1 % от QP. В связи с этим при составлении теплового баланса судовых котлов обычно принимают при подогреве воздуха дымовыми газами QПОД = QHP , а при
подогреве паром QПОД = QHP +QB . При этом основным является первое уравнение, так как паровой
Типы тепловых трат
Для каждого участка характерен свой тип тепловых трат. Рассмотрим каждый из них подробнее.
Котельная
В ней установлен котел, который преобразует топливо и передает тепловую энергию теплоносителю. Любой агрегат теряет часть вырабатываемой энергии по причине недостаточного сгорания топлива, выхода тепла через стенки котла, проблем с продувкой. В среднем, используемые на сегодняшний день котлы имеют КПД 70-75%, тогда как более новые котлы будут обеспечивать коэффициент 85% и процент потерь у них существенно ниже.
Дополнительное влияние на растраты энергии оказывают:
- отсутствие своевременной наладки режимов котла (потери возрастают на 5-10%);
- несоответствие диаметра сопел горелок нагрузке теплового агрегата: снижается теплоотдача, топливо сгорает не до конца, потери увеличиваются в среднем на 5%;
- недостаточно частая чистка стенок котла — появляется накипь и отложения, эффективность работы уменьшается на 5%;
- отсутствие контролирующих и регулировочных средств — измерителей пара, счетчиков электроэнергии, датчиков тепловой нагрузки, — или их неверная настройка уменьшают коэффициент полезности на 3-5%;
- трещины и повреждения стенок котла снижают КПД на 5-10%;
- использование устаревшего насосного оборудования уменьшает затраты котельной по ремонту и обслуживанию.
Потери в трубопроводах
Эффективность работы теплотрассы определяют следующие показатели:
- КПД насосов, с помощью которых теплоноситель двигается по трубам;
- качество и способ укладки теплопровода;
- правильные настройки тепловой сети, от которых зависит распределение тепла;
- протяженность трубопровода.
При грамотном проектировании тепловой трассы нормативные потери тепловой энергии в тепловых сетях составят не более 7%, даже если потребитель энергии будет располагаться от места производства топлива на расстоянии 2 км. Фактически на сегодняшний день на данном участке сети теплопотери могут достигать 30 и более процентов.
Потери объектов потребления
Определить лишние траты энергии в отапливаемом помещении можно при наличии прибора учета или счетчика.
Причинами такого рода потерь могут быть:
- неравномерное распределение отопления по помещению;
- уровень обогрева не соответствует погодным условиям и времени года;
- отсутствие рециркуляции горячего водоснабжения;
- отсутствие датчиков контроля температуры на бойлерах горячей воды;
- загрязнение труб или наличие внутренних утечек.
Расчет теплового баланса котла. Определение расхода топлива
Тепловой баланс котла
Составление теплового баланса котла заключается в установлении равенства между поступившим в котел количеством тепла, называемого располагаемым теплом QP, и суммой полезно использованного тепла Q1 и тепловых потерь Q2, Q3, Q4. На основании теплового баланса вычисляют КПД и необходимый расход топлива.
Тепловой баланс составляется применительно к установившемуся тепловому состоянию котла на 1 кг (1 м3) топлива при температуре 0°С и давлении 101,3 кПа.
Общее уравнение теплового баланса имеет вид:
QP + Qв.вн = Q1 + Q2 + Q3 + Q4 + Q5 + Q6, кДж/м3, (2.4.1-1)
где QP — располагаемое тепло топлива; Qв.вн — тепло, внесенное в топку воздухом при его подогреве вне котла; Qф — тепло, внесенное в топку паровым дутьем («форсуночным» паром); Q1 — полезно использованное тепло; Q2 — потеря тепла с уходящими газами; Q3 — потеря тепла от химической неполноты сгорания топлива;- потеря тепла от механической неполноты сгорания топлива; Q5 — потеря тепла от наружного охлаждения; Q6 — потеря с теплом шлака.
При сжигании газообразного топлива в отсутствие внешнего подогрева воздуха и парового дутья величины Qв.вн, Qф, Q4, Q6 равны 0, поэтому уравнение теплового баланса будет выглядеть так:
QP = Q1 + Q2 + Q3 + Q5, кДж/м3. (2.4.1-2)
Располагаемое тепло 1 м3 газообразного топлива:
QP = Qdi + iтл, кДж/м3, (2.4.1-3)
где Qdi — низшая теплота сгорания газообразного топлива, кДж/м3 (см. табл. 1); iтл — физическое тепло топлива, кДж/м3. Учитывается в том случае, когда топливо подогревается посторонним источником тепла. В нашем случае этого не происходит, поэтому QP = Qdi, кДж/м3, (2.4.1-4)
QP = 36 800 кДж/м3. (2.4.1-5)
Тепловые потери и КПД котла
Потери тепла обычно выражаются в % от располагаемого тепла топлива:
и т.д. (2.4.2-1)
Потеря тепла с уходящими газами в атмосферу определяется как разность энтальпий продуктов сгорания на выходе из последней поверхности нагрева (экономайзера) и холодного воздуха:
, (2.4.2-2)
где Iух = IН ЭК — энтальпия уходящих газов. Определяется интерполяцией по данным таблицы 7 по заданной температуре уходящих газов tух°С:
, кДж/м3. (2.4.2-3)
бух = бНЭК — коэффициент избытка воздуха за экономайзером (см. табл.3);
I0.х.в. — энтальпия холодного воздуха,
I0.х.в = (ct)в*VH = 39,8*VH,кДж/м3, (2.4.2-4)
где (ct)в = 39,8 кДж/м3 — энтальпия 1 м3 холодного воздуха при tх.в. = 30°С; VH — теоретический объем воздуха, м3/м3 (см. табл. 4) = 9,74 м3/м3.
I0.х.в = (ct)в*VH = 39,8*9,74 = 387,652 кДж/м3, (2.4.2-5)
По таблице параметров паровых котлов tух = 162°С,
,(2.4.2-6)
(2.4.2-7)
Потеря тепла от химической неполноты сгорания q3 , %, обусловлена суммарной теплотой сгорания продуктов неполного горения, остающихся в дымовых газах (СО, Н2, СН4 и др.). Для проектируемого котла принимаем
q3 = 0,5%.
Потеря тепла от наружного охлаждения q5 , %, принимается по таблице 8 в зависимости от паропроизводительности котла D, кг/с,
кг/с, (2.4.2-8)
где D, т/ч — из исходных данных = 6,73 т/ч.
Таблица 8 — Потери теплоты от наружного охлаждения парового котла с хвостовыми поверхностями
Номинальная паропроизводительность котла D, кг/с (т/ч) |
Потеря теплоты q5 , % |
1,67 (6) |
2,4 |
2,78 (10) |
1,7 |
4,16 (15) |
1,5 |
5,55 (20) |
1,3 |
6,94 (25) |
1,25 |
Находим приблизительное значение q5 , %, для номинальной паропроизводительности 6,73 т/ч.
(2.4.2-9)
Суммарная потеря теплоты в котле:
Уq = q2 + q3 + q5 = 4,62 + 0,5 + 1,93 = 7,05 % (2.4.2-10)
Коэффициент полезного действия котла (брутто):
зК = 100 — Уq = 100 — 7,05 = 92,95 %. (2.4.2-11)
Меры по сокращению потерь теплоты с поверхности трубопроводов
Энергосбережение при транспортировке тепловой энергии в первую очередь зависит от качества тепловой изоляции. Главными энергосберегающими мероприятиями, уменьшающими потери теплоты с поверхности трубопроводов, являются:
изоляция неизолированных участков и восстановление целостности существующей теплоизоляции;
восстановление целостности существующей гидроизоляции;
нанесение покрытий, состоящих из новых теплоизоляционных материалов, либо использование трубопроводов с новыми типами теплоизоляционных покрытий;
изоляция фланцев и запорной арматуры.
Изоляция неизолированных участков является первоочередным энергосберегающим мероприятием, поскольку тепловые потери с поверхности неизолированных трубопроводов очень велики по сравнению с потерями с поверхности изолированных трубопроводов, а стоимость работ по нанесению теплоизоляции относительно невелика.
Новые виды теплоизоляционных покрытий должны иметь не только низкую теплопроводность, но и малую воздухо- и водопроницаемость, а также низкую электропроводность, что уменьшает электрохимическую коррозию материала труб.
При нарушении целостности слоя гидроизоляционных покрытий происходит увеличение влажности теплоизоляции. Поскольку теплопроводность воды в диапазоне температур работы тепловой сети X = 0,6 -ь 0,7 Вт/(м • К), а теплопроводность теплоизоляционных материалов обычно составляет А,из = 0,035 -4-0,05 Вт/(м • К), то увлажнение материала может увеличить его теплопроводность в несколько раз (на практике более чем в 3 раза).
Увлажнение теплоизоляции способствует разрушению труб из-за коррозии их внешней поверхности, в результате чего срок службы трубопроводов сокращается в несколько раз. Поэтому на металлическую поверхность трубы наносится антикоррозионное покрытие, например, в виде силикатных эмалей, изола и др.
В настоящее время широко внедряются теплопроводы типа «труба в трубе» с пенополиуретановой изоляцией в гидрозащитной оболочке с дистанционным контролем целостности изоляции. Такая конструкция предусматривает предварительную изоляцию пенополиуретаном и заключение в полиэтилен не только труб, но и всех компонентов системы (шаровой арматуры, температурных компенсаторов и др.). Теплопроводы этой конструкции прокладываются под землей бесканально и обеспечивают существенное энергосбережение за счет предварительного изготовления отдельных изолированных элементов в заводских условиях и высокой тепло- и влаго- непроницаемости. Для успешной эксплуатации предварительно изолированных трубопроводов необходимо высокое качество их монтажа. При этом они могут функционировать без замены до 30 лет.
Профилактическими мерами, позволяющими сокращать потери теплоты с поверхности трубопроводов, являются: предотвращение затопления трубопроводов в результате установки дренажей (при их отсутствии) и содержания их в должном порядке; вентиляция проходных и непроходных каналов для предупреждения попадания конденсата на поверхность теплоизоляции.
В качестве еще одной меры, снижающей потери теплоты с поверхности трубопроводов, служит переход системы теплоснабжения на пониженный температурный график (с 150/70 на 115/70 или 95/70 °С/°С), что приводит к снижению разности температур теплоносителя в подающем трубопроводе и окружающей среды. Однако э го потребует большего расхода теплоносителя через систему, чтобы передать потребителю требуемое количество теплоты. Для этого нужно увеличить затраты электроэнергии на привод насосов. Поэтому для определения целесообразности проведения рассматриваемого мероприятия необходим технико-экономический расчет.
Тепловой расчет топочной камеры
Используя конструктивные данные котла, составим расчетную схему топки.
Рис. 2.1 — Схема топочной камеры
Расчет топки представим в таблице 2.3.
Таблица 2.3
Рассчитываемая величина |
Обозна-чение |
Размер-ность |
Формула или обоснование |
Расчет |
Диаметр и толщина экранных труб |
dx |
мм |
По чертежу |
32х6 |
Шаг труб |
S1 |
мм |
То же |
46 |
Поверхности: |
||||
фронтовой стены |
Fф |
м2 |
По рис. 2.1 |
33,3.16,32=543,5 |
задней стены |
Fз |
То же |
||
боковой стены |
Fб |
|||
пода |
Fпод |
8,47.16,32=138,2 |
||
потолка |
Fп |
3,2.16,32=52,2 |
||
выходного окна |
Fвых |
(9+2,8+1,34).16,32=214,4 |
||
Суммарная поверхность стен топочной камеры |
Fст |
Fф+Fз+2Fб+Fпод+Fп+ +Fвых |
543,5+442,9+2.233,5+138,2+52,2+214,4=1860 |
|
Объем топочной камеры |
Vт |
м3 |
По рис. 2.1 |
233,5.16,32=3811 |
Эффективная толщина излучающего слоя |
s |
м |
||
Тепловое напряжение топочного объема |
кВт/м3 |
|||
Коэффициент избытка воздуха в топке |
т |
— |
Принят ранее |
1,05 |
Температура горячего воздуха |
tг.в. |
С |
Задана |
333 |
Энтальпия горячего воздуха |
кДж/м3 |
По табл. 2.2 |
4271,6 |
|
Тепло, вносимое воздухом в топку |
Qв |
кДж/м3 |
||
Полезное тепловыделение в топке |
QТ |
кДж/м3 |
||
Теоретическая температура горения |
а |
С |
По табл. 2.2 |
2145С |
Абсолютная теоретическая температура горения |
Та |
К |
а+273 |
2418 |
Высота расположения горелок |
hг |
м |
По рис. 2.1 |
|
Высота топки (до середины выходного газового окна) |
Нт |
м |
То же |
|
Смещение максимума температур выше зоны горелок |
х |
— |
При использовании вихревых горелок в несколько ярусов и D>110кг/с |
0,05 |
Относительное положение максимума температур по высоте топки |
хт |
— |
||
Коэффициент |
М |
— |
||
Температура газов на выходе из топки |
С |
Принимаем предварительно |
1350 |
|
Абсолютная температура газов на выходе из топки |
К |
1623 |
||
Энтальпия газа |
кДж/м3 |
По табл. 2.2 |
23993 |
|
Средняя суммарная теплоемкость продуктов сгорания |
Vcср |
кДж/(м3.К) |
||
Давление в топке |
р |
МПа |
принимаем |
0,1 |
Коэффициент ослабления лучей трехатомными газами |
||||
Коэффициент теплового излучения несветящихся газов |
г |
— |
||
Соотношение между содержанием углерода и водорода в топливе |
— |
|||
Коэффициент ослабления лучей сажистыми частицами |
||||
Коэффициент ослабления лучей светящимся факелом |
k |
|||
Коэффициент теплового излучения светящейся части факела |
с |
— |
||
Коэффициент, характеризующий долю топочного объема, заполненную светящейся частью факела |
m |
— |
При сжигании газа и |
0,1 |
Коэффициент теплового излучения факела |
ф |
— |
||
Угловой коэффициент экрана |
х |
— |
Для плавниковых экранов |
1 |
Условный коэффициент загрязнения поверхности |
— |
При сжигании газа и настенных мембранных экранах |
0,65 |
|
Коэффициент тепловой эффективности экрана |
эк |
— |
.х |
0,65 |
Температурный коэффициент |
А |
— |
Для природного газа |
700 |
Поправочный коэффициент на взаимный теплообмен газовых объемов верхней части топки и ширм |
— |
|||
Условный коэффициент загрязнения поверхности входа в ширмы |
вых |
— |
0,65.0,52=0,338 |
|
Коэффициент тепловой эффективности выходной поверхности |
вых |
— |
вых.х |
0,338 |
Средний коэффициент тепловой эффективности |
ср |
— |
||
Коэффициент теплового излучения топки |
т |
— |
||
Значение для формулы расчетной температуры газов на выходе из топки |
R |
— |
||
Расчетная температура газов на выходе из топки |
С |
Отличается от ранее принятой менее, чем на 100С, следовательно второе приближение делать не нужно |
||
Энтальпия газа |
кДж/м3 |
По табл. 2.2 |
24590 |
|
Количество тепла, воспринятое в топке |
кДж/м3 |
|||
Поверхность стен топки, занятая горелками |
Fгор |
м2 |
Из чертежа |
14 |
Лучевоспринимающая поверхность нагрева экранов топки |
Нл |
м2 |
||
Средняя тепловая на-грузка поверхности нагрева топочных экранов |
qл |
кВт/ м2 |
Классификация систем теплоснабжения
Существует классификация систем теплоснабжения по различным признакам:
- По мощности — различаются по дальности транспортировки тепла и количеству потребителей. Местные системы теплоснабжения находятся в одном или соседних помещениях. Нагрев и передача тепла воздуху объединены в одно устройство и располагаются в печи. В централизованных системах один источник обеспечивает обогрев нескольких помещений.
- По источнику тепла. Выделяют районное теплоснабжение и теплофикацию. В первом случае источником отопления является котельная, а при теплофикации тепло обеспечивает ТЭЦ.
- По виду теплоносителя выделяют водяные и паровые системы.
Теплоноситель, нагреваясь в котельной или ТЭЦ, переносит теплоту к приборам отопления и водоснабжения в зданиях и жилых домах. Водяные тепловые системы бывают одно- и двухтрубными, реже — многотрубными. В многоквартирных домах наиболее часто применяют двухтрубную систему, когда по одной трубе горячая вода поступает в помещения, а по другой трубе, отдав температуру, возвращается к ТЭЦ или котельной. Подразделяют открытые и закрытые водяные системы. При открытом типе теплоснабжения горячую воду потребители получают из подающей сети. Если вода используется в полном объеме, применяют однотрубную систему. При закрытом водоснабжении теплоноситель возвращается к источнику тепла.
Системы централизованного теплоснабжения должны соответствовать следующим требованиям:
- санитарно-гигиеническим — теплоноситель не оказывает неблагоприятного воздействия на условия помещений, обеспечивая среднюю температуру приборов нагрева в районе 70-80 градусов;
- технико-экономическим — пропорциональное соотношение цены трубопровода к расходу топлива для обогрева;
- эксплуатационным — наличие постоянного доступа для обеспечения регулировки уровня тепла в зависимости от температуры окружающей среды и времени года.
Прокладывают теплосети над и под землей, учитывая особенности местности, технические условия, температурные режимы эксплуатации, бюджет проекта.
Выбирая территорию для прокладки теплопровода, нужно учитывать безопасность, а также предусмотреть возможность быстрого доступа к сети в случае аварии или ремонта. С целью обеспечения надежности, сети теплоснабжения не прокладывают в общих каналах с газопроводами, трубами, проводящими кислород или сжатый воздух, в которых давление превышает 1,6 МПа.
1 Исходные данные
2.1.1 Источником
теплоснабжения является ТЭЦ в составе АО-энерго, входящего в РАО «ЕЭС России».
На балансе
АО-энерго находятся магистральные и часть распределительных водяных ТС,
основная часть распределительных и квартальные сети эксплуатируются
муниципальным предприятием; ТС на промпредприятия, составляющие незначительную
долю всех ТС, находятся на балансе промпредприятий.
Присоединенная
тепловая нагрузка по договорам составляет 1258 Гкал/ч; в том числе
коммунально-бытовая 1093 и промышленная 165 Ткал/ч; отопительно-вентиляционная
тепловая нагрузка составляет 955 Гкал/ч, максимальная нагрузка на горячее
водоснабжение (по закрытой схеме) — 303 Гкал/ч; отопительно-вентиляционная
нагрузка коммунально-бытового сектора — 790 Гкал/ч, в том числе отопительная —
650 и вентиляционная — 140 Гкал/ч.
Утвержденный
АО-энерго температурный график отпуска тепла (рисунок настоящих Рекомендаций) — повышенный, расчетными
температурами воды 150/70 °С при расчетной температуре наружного воздуха tн.р = -30 °С, со срезкой 135 °С, спрямлением для горячего
водоснабжения (ГВС) 75 °С.
2.1.2 Тепловая
сеть двухтрубная тупиковая; ТС выполнены в основном подземной канальной и
надземной на низких опорах прокладкой, другие виды прокладки (бесканальная, в
проходных каналах и т.п.) занимают незначительный объем (по материальной
характеристике). Тепловая изоляция выполнена из минераловатных изделий.
Продолжительность
отопительного периода 5808 ч, летнего — 2448, ремонтного — 504 ч.
2.1.3
Материальная характеристика ТС на балансе АО-энерго по участкам представлена в
таблице настоящих
Рекомендаций.
2.1.4
Среднемесячные и среднегодовые значения температуры наружного воздуха и грунта
(на средней глубине залегания трубопроводов) по данным местной
метеорологической станции или климатических справочников, усредненным за
последние 5 лет, приведены в таблице
настоящих Рекомендаций.
2.1.5
Среднемесячные значения температуры сетевой воды в подающем и обратном
трубопроводах по утвержденному температурному графику отпуска тепла при
среднемесячных значениях температуры наружного воздуха и среднегодовые значения
температуры сетевой воды приведены в таблице настоящих Рекомендаций.
2.1.6 Результаты
испытаний по определению тепловых потерь в виде поправочных коэффициентов к
удельным тепловым потерям по нормам проектирования составляют: в среднем по
надземной прокладке — 0,91; по подземной — 0,87. Испытания проводились в 1997
г. в соответствии с РД
34.09.255-97 [].
Испытаниям
подвергались участки магистрали № 1 ТЭЦ ÷ ТК-1 и TK-1 ÷ TK-2 надземной прокладки с наружными
диаметрами 920 и 720 мм протяженностью соответственно 1092 и 671 м и участки
магистрали № 2 TK-1 ÷ TK-4 и ТК-4 ÷ ТК-6 подземной
канальной прокладки с наружными диаметрами 920 и 720 мм протяженностью
соответственно 88 и 4108 м. Материальная характеристика испытанных сетей
составляет 38 % всей материальной характеристики ТС на балансе АО-энерго.
2.1.7 Ожидаемый
(планируемый) отпуск тепловой энергии, определяемый планово-экономическими
службами энергоснабжающей организации по месяцам и за год, приведен в таблице настоящих Рекомендаций (без учета
количества тепла на промпредприятия).